{"title":"稻草水热处理生产碳水化合物的研究","authors":"Enkhtur Munkhbat, Z. Lei","doi":"10.5564/mjc.v24i50.2425","DOIUrl":null,"url":null,"abstract":" This study focused on the effect of hydrothermal (HT) treatment at 180 – 210 °C for holding 0 - 15 min on the solubilization of rice straw and the changes of HT residue. The optimum treatment conditions for the highest solubilization and solid reduction of rice straw was 210 °C for holding 0 min. Under this condition, the extraction yield and total organic carbon (TOC) concentration of the HT liquid part were the highest, about 44% and 7850 mg/L, respectively. The dry residue showed that the HT conditions above 200 °C for holding a short time were more efficient, which was confirmed by FT-IR and the changes of surface morphology under microscope. The reactor headspace could be an important factor because HT treatment with a lower headspace (HTp210-0(15)) yielded more soluble carbohydrate under the test conditions. Also, energy input calculated based on the 1 ton removed hemicellulose (extraction yield) in the headspace experiments proved this finding.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal treatment of rice straw for carbohydrate production\",\"authors\":\"Enkhtur Munkhbat, Z. Lei\",\"doi\":\"10.5564/mjc.v24i50.2425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" This study focused on the effect of hydrothermal (HT) treatment at 180 – 210 °C for holding 0 - 15 min on the solubilization of rice straw and the changes of HT residue. The optimum treatment conditions for the highest solubilization and solid reduction of rice straw was 210 °C for holding 0 min. Under this condition, the extraction yield and total organic carbon (TOC) concentration of the HT liquid part were the highest, about 44% and 7850 mg/L, respectively. The dry residue showed that the HT conditions above 200 °C for holding a short time were more efficient, which was confirmed by FT-IR and the changes of surface morphology under microscope. The reactor headspace could be an important factor because HT treatment with a lower headspace (HTp210-0(15)) yielded more soluble carbohydrate under the test conditions. Also, energy input calculated based on the 1 ton removed hemicellulose (extraction yield) in the headspace experiments proved this finding.\",\"PeriodicalId\":36661,\"journal\":{\"name\":\"Mongolian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mongolian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5564/mjc.v24i50.2425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mongolian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/mjc.v24i50.2425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
Hydrothermal treatment of rice straw for carbohydrate production
This study focused on the effect of hydrothermal (HT) treatment at 180 – 210 °C for holding 0 - 15 min on the solubilization of rice straw and the changes of HT residue. The optimum treatment conditions for the highest solubilization and solid reduction of rice straw was 210 °C for holding 0 min. Under this condition, the extraction yield and total organic carbon (TOC) concentration of the HT liquid part were the highest, about 44% and 7850 mg/L, respectively. The dry residue showed that the HT conditions above 200 °C for holding a short time were more efficient, which was confirmed by FT-IR and the changes of surface morphology under microscope. The reactor headspace could be an important factor because HT treatment with a lower headspace (HTp210-0(15)) yielded more soluble carbohydrate under the test conditions. Also, energy input calculated based on the 1 ton removed hemicellulose (extraction yield) in the headspace experiments proved this finding.