Chenhong Zhu , Jianguo Wang , Shuxun Sang , Wei Liang
{"title":"离散裂缝网络等效渗透率预测的多尺度神经网络模型","authors":"Chenhong Zhu , Jianguo Wang , Shuxun Sang , Wei Liang","doi":"10.1016/j.petrol.2022.111186","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>An equivalent permeability approach can upscale the discrete fracture network (DFN) model to an equivalent DFN model and significantly reduce the </span>gas flow simulations in a large-scale fractured gas reservoir. Current equivalent permeability prediction models are only applicable to the reservoir with a simple fracture network. However, an equivalent permeability prediction model has not been available for a reservoir with a multiscale discrete fracture network. This study proposes a multiscale </span>convolutional neural network<span> model (called MsNet) and introduces three mainstream structures with high performance convolutional neural network (CNN) (ResNet-18, VGG-16 and GoogLeNet) to efficiently predict the equivalent permeability of a complex multiscale fracture network. These CNN models use both the images and features of DFN as their input and the equivalent permeability as their output. This MsNet model is validated with the simulation results simulated by Lattice Boltzmann method<span> and compared with the three mainstream CNN structures and an existing permeability prediction model (CNN-4). It is found that this MsNet model innovatively considers the multiscale characteristics of DFN by a multiscale convolution feature fusion and combines the residual connection for further performance enhancement. Both DFN dataset and MsNet model structure affect the model prediction ability. A deeper network structure of MsNet model can enhance its prediction ability, but significantly increases training time. The MsNet-8-4 (a MsNet structure with 8 multiscale connection modules and 4 sub-networks in each module) has the least convergence time and the lowest mean absolute error on the test set. It performs obviously better than other four models on the DFN dataset with higher fracture density. The MsNet model can well accelerate the simulation on the gas flow in a complex discrete fracture network.</span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111186"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multiscale neural network model for the prediction on the equivalent permeability of discrete fracture network\",\"authors\":\"Chenhong Zhu , Jianguo Wang , Shuxun Sang , Wei Liang\",\"doi\":\"10.1016/j.petrol.2022.111186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>An equivalent permeability approach can upscale the discrete fracture network (DFN) model to an equivalent DFN model and significantly reduce the </span>gas flow simulations in a large-scale fractured gas reservoir. Current equivalent permeability prediction models are only applicable to the reservoir with a simple fracture network. However, an equivalent permeability prediction model has not been available for a reservoir with a multiscale discrete fracture network. This study proposes a multiscale </span>convolutional neural network<span> model (called MsNet) and introduces three mainstream structures with high performance convolutional neural network (CNN) (ResNet-18, VGG-16 and GoogLeNet) to efficiently predict the equivalent permeability of a complex multiscale fracture network. These CNN models use both the images and features of DFN as their input and the equivalent permeability as their output. This MsNet model is validated with the simulation results simulated by Lattice Boltzmann method<span> and compared with the three mainstream CNN structures and an existing permeability prediction model (CNN-4). It is found that this MsNet model innovatively considers the multiscale characteristics of DFN by a multiscale convolution feature fusion and combines the residual connection for further performance enhancement. Both DFN dataset and MsNet model structure affect the model prediction ability. A deeper network structure of MsNet model can enhance its prediction ability, but significantly increases training time. The MsNet-8-4 (a MsNet structure with 8 multiscale connection modules and 4 sub-networks in each module) has the least convergence time and the lowest mean absolute error on the test set. It performs obviously better than other four models on the DFN dataset with higher fracture density. The MsNet model can well accelerate the simulation on the gas flow in a complex discrete fracture network.</span></span></p></div>\",\"PeriodicalId\":16717,\"journal\":{\"name\":\"Journal of Petroleum Science and Engineering\",\"volume\":\"220 \",\"pages\":\"Article 111186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920410522010385\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
A multiscale neural network model for the prediction on the equivalent permeability of discrete fracture network
An equivalent permeability approach can upscale the discrete fracture network (DFN) model to an equivalent DFN model and significantly reduce the gas flow simulations in a large-scale fractured gas reservoir. Current equivalent permeability prediction models are only applicable to the reservoir with a simple fracture network. However, an equivalent permeability prediction model has not been available for a reservoir with a multiscale discrete fracture network. This study proposes a multiscale convolutional neural network model (called MsNet) and introduces three mainstream structures with high performance convolutional neural network (CNN) (ResNet-18, VGG-16 and GoogLeNet) to efficiently predict the equivalent permeability of a complex multiscale fracture network. These CNN models use both the images and features of DFN as their input and the equivalent permeability as their output. This MsNet model is validated with the simulation results simulated by Lattice Boltzmann method and compared with the three mainstream CNN structures and an existing permeability prediction model (CNN-4). It is found that this MsNet model innovatively considers the multiscale characteristics of DFN by a multiscale convolution feature fusion and combines the residual connection for further performance enhancement. Both DFN dataset and MsNet model structure affect the model prediction ability. A deeper network structure of MsNet model can enhance its prediction ability, but significantly increases training time. The MsNet-8-4 (a MsNet structure with 8 multiscale connection modules and 4 sub-networks in each module) has the least convergence time and the lowest mean absolute error on the test set. It performs obviously better than other four models on the DFN dataset with higher fracture density. The MsNet model can well accelerate the simulation on the gas flow in a complex discrete fracture network.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.