大水蚤对抗胆碱酯酶暴露的种群和生物标志物反应

Qianping Lang, Shao-nan Li
{"title":"大水蚤对抗胆碱酯酶暴露的种群和生物标志物反应","authors":"Qianping Lang, Shao-nan Li","doi":"10.1080/23312025.2019.1616363","DOIUrl":null,"url":null,"abstract":"Abstract Context: Cholinesterase (ChE) had long been employed for revealing environmental existence of anticholinesterases, and β-N-acetylglucosaminidase (NAGase) is a newly developed biomarker of aquatic arthropods. Still, population consequences of ChE inhibition and the consequences in terms of NAGase remained unclear. Objective: To quantify relationship between level of ChE and that of NAGase deliberated from chemical suppressed population of Daphnia magna. Methods: A set of macrophyte-dominated systems were established indoor to test insecticide chlorpyrifos. Antibodies were developed for quantifying content of ChE in bodies and content of NAGase in media, which was achieved by indirect-competitive and indirect-noncompetitive enzyme-linked immunosorbent assay (ELISA), respectively. Results: Lowest observed effect concentration (LOEC) of chlorpyrifos, as it was counted by actual concentrations, was 0.128, <0.011, 0.092, and 0.092 µg/L for population density, inherent activity of ChE, apparent activity of ChE, and content of NAGase, respectively. Corresponding to 0.90–0.48 U/µg declination in inherent activity of ChE, atrophy of −1.65 to 23% in population and that of −4.1 to 24.89% in NAGase was detected, respectively. Conclusion: Population impact of an anticholinesterase could be predicted, with adequate accuracy, by either ChE or NAGase.","PeriodicalId":10412,"journal":{"name":"Cogent Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23312025.2019.1616363","citationCount":"4","resultStr":"{\"title\":\"Population and biomarker responses of Daphnia magna towards anticholinesterase exposures\",\"authors\":\"Qianping Lang, Shao-nan Li\",\"doi\":\"10.1080/23312025.2019.1616363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Context: Cholinesterase (ChE) had long been employed for revealing environmental existence of anticholinesterases, and β-N-acetylglucosaminidase (NAGase) is a newly developed biomarker of aquatic arthropods. Still, population consequences of ChE inhibition and the consequences in terms of NAGase remained unclear. Objective: To quantify relationship between level of ChE and that of NAGase deliberated from chemical suppressed population of Daphnia magna. Methods: A set of macrophyte-dominated systems were established indoor to test insecticide chlorpyrifos. Antibodies were developed for quantifying content of ChE in bodies and content of NAGase in media, which was achieved by indirect-competitive and indirect-noncompetitive enzyme-linked immunosorbent assay (ELISA), respectively. Results: Lowest observed effect concentration (LOEC) of chlorpyrifos, as it was counted by actual concentrations, was 0.128, <0.011, 0.092, and 0.092 µg/L for population density, inherent activity of ChE, apparent activity of ChE, and content of NAGase, respectively. Corresponding to 0.90–0.48 U/µg declination in inherent activity of ChE, atrophy of −1.65 to 23% in population and that of −4.1 to 24.89% in NAGase was detected, respectively. Conclusion: Population impact of an anticholinesterase could be predicted, with adequate accuracy, by either ChE or NAGase.\",\"PeriodicalId\":10412,\"journal\":{\"name\":\"Cogent Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23312025.2019.1616363\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23312025.2019.1616363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23312025.2019.1616363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要背景:胆碱酯酶(ChE)长期以来一直被用于揭示环境中抗胆碱酯酶的存在,而β-N-乙酰氨基葡糖苷酶(NAGase)是一种新开发的水生节肢动物生物标志物。尽管如此,ChE抑制的群体后果和NAGase的后果仍不清楚。目的:从大型瑞香化学抑制种群中探讨ChE水平和NAGase水平的关系。方法:建立一套以大型植物为主的室内试验系统,对杀虫剂毒死蜱进行室内药效试验。分别通过间接竞争性和间接非竞争性酶联免疫吸附试验(ELISA)开发了用于定量体内ChE含量和培养基中NAGase含量的抗体。结果:毒死蜱的最低观察效应浓度(LOEC),按实际浓度计算,种群密度、ChE固有活性、ChE表观活性和NAGase含量分别为0.128、<0.011、0.092和0.092µg/L。与ChE固有活性下降0.90–0.48 U/µg相对应,在人群中分别检测到−1.65至23%的萎缩,在NAGase中检测到−4.1至24.89%的萎缩。结论:ChE或NAGase可以准确预测抗胆碱酯酶对人群的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population and biomarker responses of Daphnia magna towards anticholinesterase exposures
Abstract Context: Cholinesterase (ChE) had long been employed for revealing environmental existence of anticholinesterases, and β-N-acetylglucosaminidase (NAGase) is a newly developed biomarker of aquatic arthropods. Still, population consequences of ChE inhibition and the consequences in terms of NAGase remained unclear. Objective: To quantify relationship between level of ChE and that of NAGase deliberated from chemical suppressed population of Daphnia magna. Methods: A set of macrophyte-dominated systems were established indoor to test insecticide chlorpyrifos. Antibodies were developed for quantifying content of ChE in bodies and content of NAGase in media, which was achieved by indirect-competitive and indirect-noncompetitive enzyme-linked immunosorbent assay (ELISA), respectively. Results: Lowest observed effect concentration (LOEC) of chlorpyrifos, as it was counted by actual concentrations, was 0.128, <0.011, 0.092, and 0.092 µg/L for population density, inherent activity of ChE, apparent activity of ChE, and content of NAGase, respectively. Corresponding to 0.90–0.48 U/µg declination in inherent activity of ChE, atrophy of −1.65 to 23% in population and that of −4.1 to 24.89% in NAGase was detected, respectively. Conclusion: Population impact of an anticholinesterase could be predicted, with adequate accuracy, by either ChE or NAGase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Biology
Cogent Biology MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
期刊最新文献
Eco-physiological and physiological characterization of cowpea nodulating native rhizobia isolated from major production areas of Ethiopia Primary and secondary substance use in the Western Cape Province of South Africa: A mathematical modelling approach Evaluation of abamectin induced hepatotoxicity in Oreochromis mossambicus Anti-inflammatory and antioxidant activities of extracts of Reissantia indica, Cissus cornifolia and Grosseria vignei Chromatographic, Mass and Cytotoxicity analysis of Isolates from Eichhornia crassipes’ Roots and Leaves against HepG2 and MCF7 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1