L. Tew, Tsung-Hsi Lee, L. Lo, Y. Khung, Nai-Tzu Chen
{"title":"远端双光子激发诱导阿霉素释放的适配硅/金纳米胶囊","authors":"L. Tew, Tsung-Hsi Lee, L. Lo, Y. Khung, Nai-Tzu Chen","doi":"10.1080/19475411.2022.2033874","DOIUrl":null,"url":null,"abstract":"ABSTRACT Precision-based drug delivery via remote triggering is fast becoming an attractive therapeutic design and is highly useful in complicated clinical situations that may require accurate site-delivery of drug while reducing the risk of collateral damage to surrounding healthy tissue. Of the many strategies available to achieve these desirable effects, silica/gold nano-assemblies offers a practical means to achieving these aims. Herein, as a proof-of-concept, a silica nanocapsule passivated with a gold outer nanoshell had been fabricated to deliver Doxorubicin, and this nano-assembly can be remotely triggered via two-photon excitation (TPE), even under in vivo setting. A polyethylene glycol (PEG) layer as well as AS1411 DNA aptamer had also been grafted to the surface to improve homing specificity toward MDA-MB-231 breast cancer tissue. The assembly of silica/gold nanocapsules was characterized via TEM, FTIR, and UV-Vis to validate the the nanoconstruct. Upon TPE irradiation, a higher expression level of Annexin V and Caspase-3 was observed in both in vitro and in vivo animal models. A significant reduction in tumor size on mice model was noticed after 21 days, and these results had suggested a viable nano-sized design serving as remotely triggered drug release platform based on current well-established silica nanoparticulate methodologies. Grahical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"79 - 99"},"PeriodicalIF":4.5000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aptamerized silica/gold nanocapsules for stimulated release of doxorubicin through remote two-photon excitation\",\"authors\":\"L. Tew, Tsung-Hsi Lee, L. Lo, Y. Khung, Nai-Tzu Chen\",\"doi\":\"10.1080/19475411.2022.2033874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Precision-based drug delivery via remote triggering is fast becoming an attractive therapeutic design and is highly useful in complicated clinical situations that may require accurate site-delivery of drug while reducing the risk of collateral damage to surrounding healthy tissue. Of the many strategies available to achieve these desirable effects, silica/gold nano-assemblies offers a practical means to achieving these aims. Herein, as a proof-of-concept, a silica nanocapsule passivated with a gold outer nanoshell had been fabricated to deliver Doxorubicin, and this nano-assembly can be remotely triggered via two-photon excitation (TPE), even under in vivo setting. A polyethylene glycol (PEG) layer as well as AS1411 DNA aptamer had also been grafted to the surface to improve homing specificity toward MDA-MB-231 breast cancer tissue. The assembly of silica/gold nanocapsules was characterized via TEM, FTIR, and UV-Vis to validate the the nanoconstruct. Upon TPE irradiation, a higher expression level of Annexin V and Caspase-3 was observed in both in vitro and in vivo animal models. A significant reduction in tumor size on mice model was noticed after 21 days, and these results had suggested a viable nano-sized design serving as remotely triggered drug release platform based on current well-established silica nanoparticulate methodologies. Grahical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"13 1\",\"pages\":\"79 - 99\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2022.2033874\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2033874","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aptamerized silica/gold nanocapsules for stimulated release of doxorubicin through remote two-photon excitation
ABSTRACT Precision-based drug delivery via remote triggering is fast becoming an attractive therapeutic design and is highly useful in complicated clinical situations that may require accurate site-delivery of drug while reducing the risk of collateral damage to surrounding healthy tissue. Of the many strategies available to achieve these desirable effects, silica/gold nano-assemblies offers a practical means to achieving these aims. Herein, as a proof-of-concept, a silica nanocapsule passivated with a gold outer nanoshell had been fabricated to deliver Doxorubicin, and this nano-assembly can be remotely triggered via two-photon excitation (TPE), even under in vivo setting. A polyethylene glycol (PEG) layer as well as AS1411 DNA aptamer had also been grafted to the surface to improve homing specificity toward MDA-MB-231 breast cancer tissue. The assembly of silica/gold nanocapsules was characterized via TEM, FTIR, and UV-Vis to validate the the nanoconstruct. Upon TPE irradiation, a higher expression level of Annexin V and Caspase-3 was observed in both in vitro and in vivo animal models. A significant reduction in tumor size on mice model was noticed after 21 days, and these results had suggested a viable nano-sized design serving as remotely triggered drug release platform based on current well-established silica nanoparticulate methodologies. Grahical abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.