{"title":"分子标记技术在食用植物遗传多样性研究中的应用综述","authors":"Bahar Aslanbay Guler, E. Imamoglu","doi":"10.21603/2308-4057-2023-2-575","DOIUrl":null,"url":null,"abstract":"Marker-assisted technologies in the field of plant biotechnology have attracted great interest of scientists seeking to determine the genetic variety and improve specific characteristics of species. Among several types, molecular markers hold great promise due to their high efficiency, adequate accuracy, and good reproducibility. This review aimed to present different molecular markers used in genetic biodiversity studies of common food plants, including potato, corn, and tomato. \nWe presented some of the most frequent molecular markers in terms of their methodologies, advantages, challenges, and applications. We also reviewed the latest advances in the genetic diversity studies of common food plants that contribute to agricultural activities. \nAccording to latest progress, Simple Sequence Repeats, Sequence Characterized Amplified Region, and Single Nucleotide Polymorphism are the most common molecular markers in plant diversity studies due to their co-dominancy, high level of polymorphism, great reproducibility, and adequate specificity. Considering common food plants like potato, corn, and tomato, Simple Sequence Repeats and Single Nucleotide Polymorphisms provide detailed information about polymorphisms, resistance to pathogens or diseases, genome maps, and population dynamics. However, more research should be conducted to apply the latest and more efficient technologies, such as Next Generation Sequencing, Diversity Array Technologies, and omics, to the genetic diversity studies of plant species. \nWithin the scope of recent progress, this review has a strong potential in providing relevant material for further research. It can serve as a guide to adopt the latest and most efficient sequencing platforms for examining various plant species, primarily potato, corn, and tomato.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular marker technologies in food plant genetic diversity studies: an overview\",\"authors\":\"Bahar Aslanbay Guler, E. Imamoglu\",\"doi\":\"10.21603/2308-4057-2023-2-575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marker-assisted technologies in the field of plant biotechnology have attracted great interest of scientists seeking to determine the genetic variety and improve specific characteristics of species. Among several types, molecular markers hold great promise due to their high efficiency, adequate accuracy, and good reproducibility. This review aimed to present different molecular markers used in genetic biodiversity studies of common food plants, including potato, corn, and tomato. \\nWe presented some of the most frequent molecular markers in terms of their methodologies, advantages, challenges, and applications. We also reviewed the latest advances in the genetic diversity studies of common food plants that contribute to agricultural activities. \\nAccording to latest progress, Simple Sequence Repeats, Sequence Characterized Amplified Region, and Single Nucleotide Polymorphism are the most common molecular markers in plant diversity studies due to their co-dominancy, high level of polymorphism, great reproducibility, and adequate specificity. Considering common food plants like potato, corn, and tomato, Simple Sequence Repeats and Single Nucleotide Polymorphisms provide detailed information about polymorphisms, resistance to pathogens or diseases, genome maps, and population dynamics. However, more research should be conducted to apply the latest and more efficient technologies, such as Next Generation Sequencing, Diversity Array Technologies, and omics, to the genetic diversity studies of plant species. \\nWithin the scope of recent progress, this review has a strong potential in providing relevant material for further research. It can serve as a guide to adopt the latest and most efficient sequencing platforms for examining various plant species, primarily potato, corn, and tomato.\",\"PeriodicalId\":12426,\"journal\":{\"name\":\"Foods and Raw Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods and Raw Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21603/2308-4057-2023-2-575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2023-2-575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Molecular marker technologies in food plant genetic diversity studies: an overview
Marker-assisted technologies in the field of plant biotechnology have attracted great interest of scientists seeking to determine the genetic variety and improve specific characteristics of species. Among several types, molecular markers hold great promise due to their high efficiency, adequate accuracy, and good reproducibility. This review aimed to present different molecular markers used in genetic biodiversity studies of common food plants, including potato, corn, and tomato.
We presented some of the most frequent molecular markers in terms of their methodologies, advantages, challenges, and applications. We also reviewed the latest advances in the genetic diversity studies of common food plants that contribute to agricultural activities.
According to latest progress, Simple Sequence Repeats, Sequence Characterized Amplified Region, and Single Nucleotide Polymorphism are the most common molecular markers in plant diversity studies due to their co-dominancy, high level of polymorphism, great reproducibility, and adequate specificity. Considering common food plants like potato, corn, and tomato, Simple Sequence Repeats and Single Nucleotide Polymorphisms provide detailed information about polymorphisms, resistance to pathogens or diseases, genome maps, and population dynamics. However, more research should be conducted to apply the latest and more efficient technologies, such as Next Generation Sequencing, Diversity Array Technologies, and omics, to the genetic diversity studies of plant species.
Within the scope of recent progress, this review has a strong potential in providing relevant material for further research. It can serve as a guide to adopt the latest and most efficient sequencing platforms for examining various plant species, primarily potato, corn, and tomato.
期刊介绍:
The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.