{"title":"墨西哥中部(克雷塔罗)的区域流动气候学:第一个案例研究","authors":"Daniel Rozanes-Valenzuela, A. Magaldi, D. Salcedo","doi":"10.20937/atm.53038","DOIUrl":null,"url":null,"abstract":"A flow climatology was established for the Metropolitan Area of Queretaro (MAQ), in central Mexico, by analyzing four years (2014-2017) of back-trajectories generated using the HYSPLIT Model. Two flow regimes were found: one from June until September (rainy regime); the other from December to May (dry regime). October and November were considered transition months. Northeasterly flows were present throughout the year; in contrast, trajectories from the southwest were much less frequent and observed mainly during the dry regime. An analysis of the wind fields from the NARR database for a longer period of time (1979 – 2019), suggests that these results are representative of the average conditions of the atmosphere at the study site. Some of the northeasterly trajectories observed originate within a desertic region of the state of Queretaro, where several limestone mines are located. During the dry regime and transition months some clusters originate at the industrial area in Guanajuato, which includes the Salamanca refinery. As air transport of pollutants follow these paths, this analysis could be useful for identifying regional sources that affect the MAQ and possibly increase its air pollution load. In fact, the variability of criteria pollutants concentrations matched the flow regimes described above.","PeriodicalId":55576,"journal":{"name":"Atmosfera","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regional flow climatology for central Mexico (Queretaro): a first case study\",\"authors\":\"Daniel Rozanes-Valenzuela, A. Magaldi, D. Salcedo\",\"doi\":\"10.20937/atm.53038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flow climatology was established for the Metropolitan Area of Queretaro (MAQ), in central Mexico, by analyzing four years (2014-2017) of back-trajectories generated using the HYSPLIT Model. Two flow regimes were found: one from June until September (rainy regime); the other from December to May (dry regime). October and November were considered transition months. Northeasterly flows were present throughout the year; in contrast, trajectories from the southwest were much less frequent and observed mainly during the dry regime. An analysis of the wind fields from the NARR database for a longer period of time (1979 – 2019), suggests that these results are representative of the average conditions of the atmosphere at the study site. Some of the northeasterly trajectories observed originate within a desertic region of the state of Queretaro, where several limestone mines are located. During the dry regime and transition months some clusters originate at the industrial area in Guanajuato, which includes the Salamanca refinery. As air transport of pollutants follow these paths, this analysis could be useful for identifying regional sources that affect the MAQ and possibly increase its air pollution load. In fact, the variability of criteria pollutants concentrations matched the flow regimes described above.\",\"PeriodicalId\":55576,\"journal\":{\"name\":\"Atmosfera\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosfera\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.20937/atm.53038\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosfera","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.20937/atm.53038","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Regional flow climatology for central Mexico (Queretaro): a first case study
A flow climatology was established for the Metropolitan Area of Queretaro (MAQ), in central Mexico, by analyzing four years (2014-2017) of back-trajectories generated using the HYSPLIT Model. Two flow regimes were found: one from June until September (rainy regime); the other from December to May (dry regime). October and November were considered transition months. Northeasterly flows were present throughout the year; in contrast, trajectories from the southwest were much less frequent and observed mainly during the dry regime. An analysis of the wind fields from the NARR database for a longer period of time (1979 – 2019), suggests that these results are representative of the average conditions of the atmosphere at the study site. Some of the northeasterly trajectories observed originate within a desertic region of the state of Queretaro, where several limestone mines are located. During the dry regime and transition months some clusters originate at the industrial area in Guanajuato, which includes the Salamanca refinery. As air transport of pollutants follow these paths, this analysis could be useful for identifying regional sources that affect the MAQ and possibly increase its air pollution load. In fact, the variability of criteria pollutants concentrations matched the flow regimes described above.
期刊介绍:
ATMÓSFERA seeks contributions on theoretical, basic, empirical and applied research in all the areas of atmospheric sciences, with emphasis on meteorology, climatology, aeronomy, physics, chemistry, and aerobiology. Interdisciplinary contributions are also accepted; especially those related with oceanography, hydrology, climate variability and change, ecology, forestry, glaciology, agriculture, environmental pollution, and other topics related to economy and society as they are affected by atmospheric hazards.