{"title":"碳纳米管对磁流体层中扰动耗散的影响","authors":"","doi":"10.22364/mhd.57.2.10","DOIUrl":null,"url":null,"abstract":"In this paper, processes of dissipation of disturbances of pressure and velocity in a magnetic fluid layer are experimentally studied. It is shown that the introduction of multi-layer carbon nanotubes (MCNT) up to 2wt.% into a magnetic fluid substantially increases the dissipation of disturbances due to increasing viscous friction and elastic properties of multilayer carbon nanotubes. Figs 9, Refs 9.","PeriodicalId":18136,"journal":{"name":"Magnetohydrodynamics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of carbon nanotubes on the dissipation of disturbances in a magnetic fluid layer\",\"authors\":\"\",\"doi\":\"10.22364/mhd.57.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, processes of dissipation of disturbances of pressure and velocity in a magnetic fluid layer are experimentally studied. It is shown that the introduction of multi-layer carbon nanotubes (MCNT) up to 2wt.% into a magnetic fluid substantially increases the dissipation of disturbances due to increasing viscous friction and elastic properties of multilayer carbon nanotubes. Figs 9, Refs 9.\",\"PeriodicalId\":18136,\"journal\":{\"name\":\"Magnetohydrodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetohydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22364/mhd.57.2.10\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetohydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22364/mhd.57.2.10","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Influence of carbon nanotubes on the dissipation of disturbances in a magnetic fluid layer
In this paper, processes of dissipation of disturbances of pressure and velocity in a magnetic fluid layer are experimentally studied. It is shown that the introduction of multi-layer carbon nanotubes (MCNT) up to 2wt.% into a magnetic fluid substantially increases the dissipation of disturbances due to increasing viscous friction and elastic properties of multilayer carbon nanotubes. Figs 9, Refs 9.