利用对数比值比滤波器进行充分变量筛选

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2022-01-01 DOI:10.1214/21-ejs1951
Baoying Yang, Wenbo Wu, Xiangrong Yin
{"title":"利用对数比值比滤波器进行充分变量筛选","authors":"Baoying Yang, Wenbo Wu, Xiangrong Yin","doi":"10.1214/21-ejs1951","DOIUrl":null,"url":null,"abstract":": For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sufficient variable screening using log odds ratio filter\",\"authors\":\"Baoying Yang, Wenbo Wu, Xiangrong Yin\",\"doi\":\"10.1214/21-ejs1951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ejs1951\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ejs1951","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

:对于超高维数据,变量筛选是减少问题规模的重要步骤,因此可以提高估计精度和效率。在本文中,我们提出了一种新的相关性测度,称为对数比值比统计量,用于有效变量筛选框架下。有效的变量筛选方法确保了所选输入特征在回归函数建模中的有效性,是对现有边际筛选方法的改进。此外,我们提出了一种集成变量筛选方法,将所提出的融合对数比值比滤波器与融合Kolmogorov滤波器相结合,通过利用这两种滤波器的优势实现最高性能。我们为边际变量筛选和有效变量筛选建立了融合对数比值比滤波器的可靠筛选特性。提供了广泛的模拟和实际数据分析,以证明所提出的对数比值比滤波器和有效的变量筛选程序的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On sufficient variable screening using log odds ratio filter
: For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1