压水堆安全端异种金属焊接接头非均质材料力学模型下SCC尖端裂纹驱动力

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Science and Technology of Nuclear Installations Pub Date : 2022-01-13 DOI:10.1155/2022/6605101
Yuman Sun, H. Xue, K. Zhao, Yubiao Zhang, Y. Zhao, W. Yan, R. Bashir
{"title":"压水堆安全端异种金属焊接接头非均质材料力学模型下SCC尖端裂纹驱动力","authors":"Yuman Sun, H. Xue, K. Zhao, Yubiao Zhang, Y. Zhao, W. Yan, R. Bashir","doi":"10.1155/2022/6605101","DOIUrl":null,"url":null,"abstract":"The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking Driving Force at the Tip of SCC under Heterogeneous Material Mechanics Model of Safe-End Dissimilar Metal-Welded Joints in PWR\",\"authors\":\"Yuman Sun, H. Xue, K. Zhao, Yubiao Zhang, Y. Zhao, W. Yan, R. Bashir\",\"doi\":\"10.1155/2022/6605101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6605101\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6605101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

压水堆安全端异种金属焊接接头(DMWJs)尖端应力腐蚀开裂(SCC)的复杂驱动力主要是由材料力学性能的不均匀性引起的。本研究基于非均质材料特性模型,分析了裂纹尖端不同位置的应力-应变状态、应力三轴性和j积分,以准确评价DMWJs中SCC处的裂纹驱动力。结果表明:当裂纹位于SA508区和316L区与母材交界面处时,对i型裂纹的驱动力较大;此外,非均质材料性能抑制了316L区裂纹的j积分,而当裂纹位于SA508区和焊缝金属时,j积分有促进作用。为压水堆裂纹尖端驱动力分析和安全性评价提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cracking Driving Force at the Tip of SCC under Heterogeneous Material Mechanics Model of Safe-End Dissimilar Metal-Welded Joints in PWR
The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
期刊最新文献
Assessment of Radiation Dose Associated with the Atmospheric Release of 41Ar from the TRIGA Mark-II Research Reactor in Bangladesh Design Change and Operational Consideration of the HVAC System during Nuclear Power Plant Decommissioning Accuracy Evaluation of Monte Carlo Simulation Results Using ENDF/B-VIII.0 and JENDL-5 Libraries for 10 MWth Micro Heat Pipe-Cooled Reactor Effect of Photomultiplier Tube Voltage on the Performance of Sealed NaI (Tl) Scintillator Detectors Overview on Radiation Damage Effects and Protection Techniques in Microelectronic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1