{"title":"基于双层代理模型的原油蒸馏装置优化设计","authors":"Ying Xiong, Xuhua Shi, Yongjian Ma, Yifan Chen","doi":"10.3389/fcteg.2023.1162318","DOIUrl":null,"url":null,"abstract":"Crude Oil Distillation Unit (CDU) is one of the most important separation installations in the petroleum refinery industries. In this work, a Bi-level Surrogate column model Aided Constrained Optimization Design (Bi-SACOD) is proposed for time-consuming objectives and constraints in the evolutionary optimization design of CDUs. The main components of Bi-SACOD include bi-level surrogate model construction (Bi-SMC), bi-level model management (Bi-MM), and particle swarm optimization (PSO) mixed-integer constrained evolutionary (PSO-MICE) search. Bi-SMC implements surrogate column model construction and feasible domain identification. Bi-MM combines surrogate column models with rigorous CDU simulations to perform model management, and PSO-MICE implements optimum search works. The optimization results of the CDUs indicate that Bi-SACOD outperforms the single-level surrogate column model approaches, and are more consistent with the rigorous CDU model optimization approach, whereas the evaluation numbers of the time-consuming rigorous models are significantly reduced.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization design of crude oil distillation unit using bi-level surrogate model\",\"authors\":\"Ying Xiong, Xuhua Shi, Yongjian Ma, Yifan Chen\",\"doi\":\"10.3389/fcteg.2023.1162318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crude Oil Distillation Unit (CDU) is one of the most important separation installations in the petroleum refinery industries. In this work, a Bi-level Surrogate column model Aided Constrained Optimization Design (Bi-SACOD) is proposed for time-consuming objectives and constraints in the evolutionary optimization design of CDUs. The main components of Bi-SACOD include bi-level surrogate model construction (Bi-SMC), bi-level model management (Bi-MM), and particle swarm optimization (PSO) mixed-integer constrained evolutionary (PSO-MICE) search. Bi-SMC implements surrogate column model construction and feasible domain identification. Bi-MM combines surrogate column models with rigorous CDU simulations to perform model management, and PSO-MICE implements optimum search works. The optimization results of the CDUs indicate that Bi-SACOD outperforms the single-level surrogate column model approaches, and are more consistent with the rigorous CDU model optimization approach, whereas the evaluation numbers of the time-consuming rigorous models are significantly reduced.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2023.1162318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2023.1162318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization design of crude oil distillation unit using bi-level surrogate model
Crude Oil Distillation Unit (CDU) is one of the most important separation installations in the petroleum refinery industries. In this work, a Bi-level Surrogate column model Aided Constrained Optimization Design (Bi-SACOD) is proposed for time-consuming objectives and constraints in the evolutionary optimization design of CDUs. The main components of Bi-SACOD include bi-level surrogate model construction (Bi-SMC), bi-level model management (Bi-MM), and particle swarm optimization (PSO) mixed-integer constrained evolutionary (PSO-MICE) search. Bi-SMC implements surrogate column model construction and feasible domain identification. Bi-MM combines surrogate column models with rigorous CDU simulations to perform model management, and PSO-MICE implements optimum search works. The optimization results of the CDUs indicate that Bi-SACOD outperforms the single-level surrogate column model approaches, and are more consistent with the rigorous CDU model optimization approach, whereas the evaluation numbers of the time-consuming rigorous models are significantly reduced.