半结晶聚合物驻极体的电荷捕获机制:准偶极子模型

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Nanodielectrics Pub Date : 2020-07-03 DOI:10.1049/iet-nde.2020.0003
Gangjin Chen, Jianfeng Zhang, Xiaoyan Shi, Huili Peng, Xi Chen
{"title":"半结晶聚合物驻极体的电荷捕获机制:准偶极子模型","authors":"Gangjin Chen,&nbsp;Jianfeng Zhang,&nbsp;Xiaoyan Shi,&nbsp;Huili Peng,&nbsp;Xi Chen","doi":"10.1049/iet-nde.2020.0003","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Polymer electrets are increasingly getting application in a very wide range. However, its charge trapped mechanism is still poorly understood. It is always challenging how to improve its charge trapped ability and to enhance its performance stability. In this study, a charge trapped mechanism, quasi-dipole model, is proposed for semi-crystalline polymer electrets. Every grain of crystallite is viewed as a dipole based on the polarisation effect between crystalline and amorphous region when charged. The energy level of the charge trap has a dependence on the crystallite structure. The more regular the crystallite grain structure the better charge stability is. The melt-blown polypropylene (MBPP) electret fabrics with α or mesomorphic crystallite are used as the model material to verify the rationality of the mechanism. The experiment results from thermally stimulating discharge and X-ray diffraction proved that the charge-trapped stability could be improved by means of transformation from meso-crystalline to α crystalline structure. The MBPP fabric containing α-crystallite shows much better charge trapped performance than one containing mesomorphic-crystallite because of more regular structure in α crystallite. The findings not only present new insight into charge-trapped phenomena in polymer electrets, but also provide innovation for the processing technology of polymer electret materials.</p>\n </div>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0003","citationCount":"6","resultStr":"{\"title\":\"Charge trapped mechanism for semi-crystalline polymer electrets: quasi-dipole model\",\"authors\":\"Gangjin Chen,&nbsp;Jianfeng Zhang,&nbsp;Xiaoyan Shi,&nbsp;Huili Peng,&nbsp;Xi Chen\",\"doi\":\"10.1049/iet-nde.2020.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Polymer electrets are increasingly getting application in a very wide range. However, its charge trapped mechanism is still poorly understood. It is always challenging how to improve its charge trapped ability and to enhance its performance stability. In this study, a charge trapped mechanism, quasi-dipole model, is proposed for semi-crystalline polymer electrets. Every grain of crystallite is viewed as a dipole based on the polarisation effect between crystalline and amorphous region when charged. The energy level of the charge trap has a dependence on the crystallite structure. The more regular the crystallite grain structure the better charge stability is. The melt-blown polypropylene (MBPP) electret fabrics with α or mesomorphic crystallite are used as the model material to verify the rationality of the mechanism. The experiment results from thermally stimulating discharge and X-ray diffraction proved that the charge-trapped stability could be improved by means of transformation from meso-crystalline to α crystalline structure. The MBPP fabric containing α-crystallite shows much better charge trapped performance than one containing mesomorphic-crystallite because of more regular structure in α crystallite. The findings not only present new insight into charge-trapped phenomena in polymer electrets, but also provide innovation for the processing technology of polymer electret materials.</p>\\n </div>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0003\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-nde.2020.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-nde.2020.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

摘要

聚合物驻极体的应用越来越广泛。然而,人们对其电荷捕获机制仍知之甚少。如何提高其电荷捕获能力和提高其性能稳定性一直是一个挑战。在本研究中,提出了半结晶聚合物驻极体的电荷捕获机制,准偶极模型。基于带电时晶体和非晶体区域之间的极化效应,微晶的每一个晶粒都被视为偶极。电荷陷阱的能级依赖于微晶结构。晶粒结构越规则,电荷稳定性越好。以具有α或中晶晶粒的熔喷聚丙烯(MBPP)驻极体织物为模型材料,验证了该机理的合理性。热刺激放电和X射线衍射的实验结果表明,由细晶结构向α晶结构转变可以提高电荷捕获的稳定性。含有α-微晶的MBPP织物由于其结构更加规则,表现出比含有介晶微晶的MB聚丙烯织物更好的电荷捕获性能。这些发现不仅为聚合物驻极体中的电荷捕获现象提供了新的见解,而且为聚合物驻电体材料的加工技术提供了创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge trapped mechanism for semi-crystalline polymer electrets: quasi-dipole model

Polymer electrets are increasingly getting application in a very wide range. However, its charge trapped mechanism is still poorly understood. It is always challenging how to improve its charge trapped ability and to enhance its performance stability. In this study, a charge trapped mechanism, quasi-dipole model, is proposed for semi-crystalline polymer electrets. Every grain of crystallite is viewed as a dipole based on the polarisation effect between crystalline and amorphous region when charged. The energy level of the charge trap has a dependence on the crystallite structure. The more regular the crystallite grain structure the better charge stability is. The melt-blown polypropylene (MBPP) electret fabrics with α or mesomorphic crystallite are used as the model material to verify the rationality of the mechanism. The experiment results from thermally stimulating discharge and X-ray diffraction proved that the charge-trapped stability could be improved by means of transformation from meso-crystalline to α crystalline structure. The MBPP fabric containing α-crystallite shows much better charge trapped performance than one containing mesomorphic-crystallite because of more regular structure in α crystallite. The findings not only present new insight into charge-trapped phenomena in polymer electrets, but also provide innovation for the processing technology of polymer electret materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
期刊最新文献
A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine Stability of giant dielectric properties in co‐doped rutile TiO2 ceramics under temperature and humidity High‐performance sulphur dioxide sensor: Unveiling the potential of photonic crystal fibre technology Improvement in non-linear electrical conductivity of silicone rubber by incorporating zinc oxide fillers and grafting small polar molecules Traditional fault diagnosis methods for mineral oil-immersed power transformer based on dissolved gas analysis: Past, present and future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1