Celia Idres, M. Kaci, Nadjet Dehouche, Carole Lainé, S. Bruzaud
{"title":"龙舌兰纤维含量对聚(3-羟基丁酸酯-co-3-羟基己酸酯)生物复合材料形态、力学、流变学和热性能的影响","authors":"Celia Idres, M. Kaci, Nadjet Dehouche, Carole Lainé, S. Bruzaud","doi":"10.1177/20412479221128962","DOIUrl":null,"url":null,"abstract":"Green biocomposites based on poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) reinforced with Agave Americana fibers (AAF) were elaborated by melt compounding at various fiber content ratios, that is, 10, 20, and 30 wt.%. Morphology before and after tensile testing, rheological, viscoelastic, mechanical, and thermal properties of the biocomposite samples were investigated with respect to the AAF content. Tensile and DMA data showed a significant increase in both Young’s modulus and storage modulus of PHBHHx biocomposites with the AAF content, however, more relevant at 30 wt.%. However, a slight decrease in tensile strength and strain at break was observed, while thermal stability remained almost unchanged whatever the AAF content. The study highlighted the reinforcement effect of AAF in PHBHHx biocomposite materials, in particular at filler content of 30 wt. %. Graphical Abstract","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Agave Americana fibers content on morphology and mechanical, rheological, and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites\",\"authors\":\"Celia Idres, M. Kaci, Nadjet Dehouche, Carole Lainé, S. Bruzaud\",\"doi\":\"10.1177/20412479221128962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green biocomposites based on poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) reinforced with Agave Americana fibers (AAF) were elaborated by melt compounding at various fiber content ratios, that is, 10, 20, and 30 wt.%. Morphology before and after tensile testing, rheological, viscoelastic, mechanical, and thermal properties of the biocomposite samples were investigated with respect to the AAF content. Tensile and DMA data showed a significant increase in both Young’s modulus and storage modulus of PHBHHx biocomposites with the AAF content, however, more relevant at 30 wt.%. However, a slight decrease in tensile strength and strain at break was observed, while thermal stability remained almost unchanged whatever the AAF content. The study highlighted the reinforcement effect of AAF in PHBHHx biocomposite materials, in particular at filler content of 30 wt. %. Graphical Abstract\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479221128962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479221128962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Effect of Agave Americana fibers content on morphology and mechanical, rheological, and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites
Green biocomposites based on poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) reinforced with Agave Americana fibers (AAF) were elaborated by melt compounding at various fiber content ratios, that is, 10, 20, and 30 wt.%. Morphology before and after tensile testing, rheological, viscoelastic, mechanical, and thermal properties of the biocomposite samples were investigated with respect to the AAF content. Tensile and DMA data showed a significant increase in both Young’s modulus and storage modulus of PHBHHx biocomposites with the AAF content, however, more relevant at 30 wt.%. However, a slight decrease in tensile strength and strain at break was observed, while thermal stability remained almost unchanged whatever the AAF content. The study highlighted the reinforcement effect of AAF in PHBHHx biocomposite materials, in particular at filler content of 30 wt. %. Graphical Abstract
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.