{"title":"Inconel 718与Nimonic 80A搅拌摩擦焊的有限元模拟","authors":"T. Saju, M. Velu","doi":"10.13052/EJCM1779-7179.29465","DOIUrl":null,"url":null,"abstract":"This paper presents results of simulation of friction stir dissimilar welding of 5 mm thick, Nickel-based super-alloys, Inconel 718, and Nimonic 80A using Abaqus software. Four different trials were done to understand the influence of tool rotation speed on temperature distribution in weld zone while travel speed remains constant. The temperature in the weld zone was found to increase with the increase in tool rotation speed and travel speed. The temperature on the advancing side of the tool was higher than that of the retreating side. The tensile strength of weldment was found, by simulation, to be 25% more than that of base metal, Inconel 718. This may be due to grain refinement and dynamic recrystallization during FSW. The simulated bend test revealed an adequate level of ductility of weldments.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Simulation of Friction Stir Welding of Inconel 718 to Nimonic 80A\",\"authors\":\"T. Saju, M. Velu\",\"doi\":\"10.13052/EJCM1779-7179.29465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents results of simulation of friction stir dissimilar welding of 5 mm thick, Nickel-based super-alloys, Inconel 718, and Nimonic 80A using Abaqus software. Four different trials were done to understand the influence of tool rotation speed on temperature distribution in weld zone while travel speed remains constant. The temperature in the weld zone was found to increase with the increase in tool rotation speed and travel speed. The temperature on the advancing side of the tool was higher than that of the retreating side. The tensile strength of weldment was found, by simulation, to be 25% more than that of base metal, Inconel 718. This may be due to grain refinement and dynamic recrystallization during FSW. The simulated bend test revealed an adequate level of ductility of weldments.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/EJCM1779-7179.29465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/EJCM1779-7179.29465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Finite Element Simulation of Friction Stir Welding of Inconel 718 to Nimonic 80A
This paper presents results of simulation of friction stir dissimilar welding of 5 mm thick, Nickel-based super-alloys, Inconel 718, and Nimonic 80A using Abaqus software. Four different trials were done to understand the influence of tool rotation speed on temperature distribution in weld zone while travel speed remains constant. The temperature in the weld zone was found to increase with the increase in tool rotation speed and travel speed. The temperature on the advancing side of the tool was higher than that of the retreating side. The tensile strength of weldment was found, by simulation, to be 25% more than that of base metal, Inconel 718. This may be due to grain refinement and dynamic recrystallization during FSW. The simulated bend test revealed an adequate level of ductility of weldments.