具有多个转向代理的无通信引导导航

Ai-lan Li, Masaki Ogura, N. Wakamiya
{"title":"具有多个转向代理的无通信引导导航","authors":"Ai-lan Li, Masaki Ogura, N. Wakamiya","doi":"10.3389/fcteg.2023.989232","DOIUrl":null,"url":null,"abstract":"Flocking guidance addresses a challenging problem considering the navigation and control of a group of passive agents. To solve this problem, shepherding offers a bio-inspired technique for navigating such a group of agents using external steering agents with appropriately designed movement law. Although most shepherding research is mainly based on the availability of centralized instructions, these assumptions are not realistic enough to solve some emerging application problems. Therefore, this paper presents a decentralized shepherding method where each steering agent makes movements based on its own observation without any inter-agent communication. Our numerical simulations confirm the effectiveness of the proposed method by showing its high success rate and low costs in various placement patterns. These advantages particularly improve with the increase in the number of steering agents. We also confirm the robustness and resilience properties of the proposed method via numerical simulations.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Communication-free shepherding navigation with multiple steering agents\",\"authors\":\"Ai-lan Li, Masaki Ogura, N. Wakamiya\",\"doi\":\"10.3389/fcteg.2023.989232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flocking guidance addresses a challenging problem considering the navigation and control of a group of passive agents. To solve this problem, shepherding offers a bio-inspired technique for navigating such a group of agents using external steering agents with appropriately designed movement law. Although most shepherding research is mainly based on the availability of centralized instructions, these assumptions are not realistic enough to solve some emerging application problems. Therefore, this paper presents a decentralized shepherding method where each steering agent makes movements based on its own observation without any inter-agent communication. Our numerical simulations confirm the effectiveness of the proposed method by showing its high success rate and low costs in various placement patterns. These advantages particularly improve with the increase in the number of steering agents. We also confirm the robustness and resilience properties of the proposed method via numerical simulations.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2023.989232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2023.989232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑到一组被动代理的导航和控制,群集引导解决了一个具有挑战性的问题。为了解决这个问题,牧羊提供了一种受生物启发的技术,使用具有适当设计的运动规律的外部转向代理来导航这样一组代理。尽管大多数引导研究主要基于集中式指令的可用性,但这些假设不足以解决一些新出现的应用程序问题。因此,本文提出了一种分散的牧羊方法,其中每个引导代理根据自己的观察进行运动,而不需要任何代理间的通信。数值模拟结果表明,该方法在不同的放置模式下成功率高、成本低,验证了该方法的有效性。这些优点尤其随着转向剂数量的增加而改善。通过数值模拟验证了该方法的鲁棒性和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communication-free shepherding navigation with multiple steering agents
Flocking guidance addresses a challenging problem considering the navigation and control of a group of passive agents. To solve this problem, shepherding offers a bio-inspired technique for navigating such a group of agents using external steering agents with appropriately designed movement law. Although most shepherding research is mainly based on the availability of centralized instructions, these assumptions are not realistic enough to solve some emerging application problems. Therefore, this paper presents a decentralized shepherding method where each steering agent makes movements based on its own observation without any inter-agent communication. Our numerical simulations confirm the effectiveness of the proposed method by showing its high success rate and low costs in various placement patterns. These advantages particularly improve with the increase in the number of steering agents. We also confirm the robustness and resilience properties of the proposed method via numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reinforcement learning for path planning of free-floating space robotic manipulator with collision avoidance and observation noise Self-paced heart rate control during treadmill exercise for persons with gait impairment: a case study Editorial: Cooperative control and team behaviors in adversarial environments Erratum: Global versus local Lyapunov approach used in disturbance observer-based wind turbine control Teaming behavior in adversarial scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1