{"title":"碱或酸辅助聚苯乙烯塑料在超临界CO2中的降解","authors":"Yanbing Liu, Jinwen Shi, Liuhao Mao, Bingru Lu, Xing Kang, Hui Jin","doi":"10.1007/s42768-023-00139-1","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic has caused serious \"white pollution\" to the environment, and the highly inert characteristics of plastic bring a major challenge for degradation. Supercritical fluids have unique physical properties and have been widely used in various fields. In this work, supercritical CO<sub>2</sub> (Sc-CO<sub>2</sub>) with mild conditions was selected and assisted by NaOH/HCl solution to degrade polystyrene (PS) plastic, and the reaction model was designed using response surface methodology (RSM). It was found that, regardless of the types of assistance solutions, the factors affecting PS degradation efficiencies were reaction temperature, reaction time, and NaOH/HCl concentration. At the temperature of 400 °C, time of 120 min, and base/acid concentration of 5% (in weight), 0.15 g PS produced 126.88/116.99±5 mL of gases with 74.18/62.78±5 mL of H<sub>2</sub>, and consumed 81.2/71.5±5 mL of CO<sub>2</sub>. Sc-CO<sub>2</sub> created a homogeneous environment, which made PS highly dispersed and uniformly heated, thus promoting the degradation of PS. Moreover, Sc-CO<sub>2</sub> also reacted with the degradation products to produce new CO and more CH<sub>4</sub> and C<sub>2</sub>H<sub><i>x</i></sub> (<i>x</i>=4, 6). Adding NaOH/HCl solution not only improved the solubility of PS in Sc-CO<sub>2</sub>, but also provided a base/acid environment that reduced the activation energy of the reaction, and effectively improved the degradation efficiencies of PS. In short, degrading PS in Sc-CO<sub>2</sub> is feasible, and better results are obtained with the assistance of base/acid solution, which can provide a reference for the disposal of waste plastics in the future.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"5 2","pages":"165 - 175"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00139-1.pdf","citationCount":"2","resultStr":"{\"title\":\"Base- or acid-assisted polystyrene plastic degradation in supercritical CO2\",\"authors\":\"Yanbing Liu, Jinwen Shi, Liuhao Mao, Bingru Lu, Xing Kang, Hui Jin\",\"doi\":\"10.1007/s42768-023-00139-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plastic has caused serious \\\"white pollution\\\" to the environment, and the highly inert characteristics of plastic bring a major challenge for degradation. Supercritical fluids have unique physical properties and have been widely used in various fields. In this work, supercritical CO<sub>2</sub> (Sc-CO<sub>2</sub>) with mild conditions was selected and assisted by NaOH/HCl solution to degrade polystyrene (PS) plastic, and the reaction model was designed using response surface methodology (RSM). It was found that, regardless of the types of assistance solutions, the factors affecting PS degradation efficiencies were reaction temperature, reaction time, and NaOH/HCl concentration. At the temperature of 400 °C, time of 120 min, and base/acid concentration of 5% (in weight), 0.15 g PS produced 126.88/116.99±5 mL of gases with 74.18/62.78±5 mL of H<sub>2</sub>, and consumed 81.2/71.5±5 mL of CO<sub>2</sub>. Sc-CO<sub>2</sub> created a homogeneous environment, which made PS highly dispersed and uniformly heated, thus promoting the degradation of PS. Moreover, Sc-CO<sub>2</sub> also reacted with the degradation products to produce new CO and more CH<sub>4</sub> and C<sub>2</sub>H<sub><i>x</i></sub> (<i>x</i>=4, 6). Adding NaOH/HCl solution not only improved the solubility of PS in Sc-CO<sub>2</sub>, but also provided a base/acid environment that reduced the activation energy of the reaction, and effectively improved the degradation efficiencies of PS. In short, degrading PS in Sc-CO<sub>2</sub> is feasible, and better results are obtained with the assistance of base/acid solution, which can provide a reference for the disposal of waste plastics in the future.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"5 2\",\"pages\":\"165 - 175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42768-023-00139-1.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-023-00139-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00139-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Base- or acid-assisted polystyrene plastic degradation in supercritical CO2
Plastic has caused serious "white pollution" to the environment, and the highly inert characteristics of plastic bring a major challenge for degradation. Supercritical fluids have unique physical properties and have been widely used in various fields. In this work, supercritical CO2 (Sc-CO2) with mild conditions was selected and assisted by NaOH/HCl solution to degrade polystyrene (PS) plastic, and the reaction model was designed using response surface methodology (RSM). It was found that, regardless of the types of assistance solutions, the factors affecting PS degradation efficiencies were reaction temperature, reaction time, and NaOH/HCl concentration. At the temperature of 400 °C, time of 120 min, and base/acid concentration of 5% (in weight), 0.15 g PS produced 126.88/116.99±5 mL of gases with 74.18/62.78±5 mL of H2, and consumed 81.2/71.5±5 mL of CO2. Sc-CO2 created a homogeneous environment, which made PS highly dispersed and uniformly heated, thus promoting the degradation of PS. Moreover, Sc-CO2 also reacted with the degradation products to produce new CO and more CH4 and C2Hx (x=4, 6). Adding NaOH/HCl solution not only improved the solubility of PS in Sc-CO2, but also provided a base/acid environment that reduced the activation energy of the reaction, and effectively improved the degradation efficiencies of PS. In short, degrading PS in Sc-CO2 is feasible, and better results are obtained with the assistance of base/acid solution, which can provide a reference for the disposal of waste plastics in the future.