{"title":"TiO2和TiO2/CS纳米粒子在紫外辐射下的光催化行为","authors":"E. Mosquera-Vargas, D. Herrera-Molina, J. Diosa","doi":"10.18273/revuin.v21n3-2022007","DOIUrl":null,"url":null,"abstract":"TiO2 nanoparticles and TiO2/CS nanocomposites have been synthesized using the sol-gel method. Characterization by XRD, FTIR, and UV-vis was carried out to determine the structure, size, functional groups, and energy band gap of the synthesized samples. Moreover, the methyl orange (MO) degradation capability of nanoparticles and nanocomposites under ultraviolet light was studied, and the results are described in detail.","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photocatalytic behavior of TiO2 and TiO2/CS nanoparticles under UV irradiation\",\"authors\":\"E. Mosquera-Vargas, D. Herrera-Molina, J. Diosa\",\"doi\":\"10.18273/revuin.v21n3-2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiO2 nanoparticles and TiO2/CS nanocomposites have been synthesized using the sol-gel method. Characterization by XRD, FTIR, and UV-vis was carried out to determine the structure, size, functional groups, and energy band gap of the synthesized samples. Moreover, the methyl orange (MO) degradation capability of nanoparticles and nanocomposites under ultraviolet light was studied, and the results are described in detail.\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v21n3-2022007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v21n3-2022007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocatalytic behavior of TiO2 and TiO2/CS nanoparticles under UV irradiation
TiO2 nanoparticles and TiO2/CS nanocomposites have been synthesized using the sol-gel method. Characterization by XRD, FTIR, and UV-vis was carried out to determine the structure, size, functional groups, and energy band gap of the synthesized samples. Moreover, the methyl orange (MO) degradation capability of nanoparticles and nanocomposites under ultraviolet light was studied, and the results are described in detail.