焊后热处理对电子束焊接6156铝合金接头的影响

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY High Temperature Materials and Processes Pub Date : 2023-01-01 DOI:10.1515/htmp-2022-0253
Shaogang Wang, Junke Xu, Yongpeng Wang
{"title":"焊后热处理对电子束焊接6156铝合金接头的影响","authors":"Shaogang Wang, Junke Xu, Yongpeng Wang","doi":"10.1515/htmp-2022-0253","DOIUrl":null,"url":null,"abstract":"Abstract The 6156 aluminum alloy is welded by electron beam welding, and different post-weld heat treatments (PWHTs) are carried out on the joints. The microstructure, mechanical property, and corrosion behavior of the welded joint before and after PWHT are investigated, respectively. Results show that the fusion zone is composed of columnar crystal and equiaxed grain in as-welded (AW) condition. There are mainly α-Al matrix phase, and some strengthening phases β″(Mg2Si) and Q(Al4CuMg5Si4) in weld metal. After PWHT, the quantity of strengthening phases in weldment is greatly increased, and their distribution is also improved. The tensile strength of welded joint is 65.8% of that of the base metal (BM) in AW condition. After the heat treatment of HT2, the strength coefficient of joint reaches 85.1%. There are many dimples on the tensile fracture surface, and the joint obviously presents the characteristic of ductile fracture. The electrochemical corrosion performance and resistance to intergranular corrosion of weldment in AW condition are higher than that of the BM. However, they are decreased to a certain extent after PWHT. Compared with that of the AW joint, the resistance to intergranular corrosion is slightly decreased after PWHT, and that of the HT2 joint is the best among them.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of post-weld heat treatment on 6156 aluminum alloy joint formed by electron beam welding\",\"authors\":\"Shaogang Wang, Junke Xu, Yongpeng Wang\",\"doi\":\"10.1515/htmp-2022-0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The 6156 aluminum alloy is welded by electron beam welding, and different post-weld heat treatments (PWHTs) are carried out on the joints. The microstructure, mechanical property, and corrosion behavior of the welded joint before and after PWHT are investigated, respectively. Results show that the fusion zone is composed of columnar crystal and equiaxed grain in as-welded (AW) condition. There are mainly α-Al matrix phase, and some strengthening phases β″(Mg2Si) and Q(Al4CuMg5Si4) in weld metal. After PWHT, the quantity of strengthening phases in weldment is greatly increased, and their distribution is also improved. The tensile strength of welded joint is 65.8% of that of the base metal (BM) in AW condition. After the heat treatment of HT2, the strength coefficient of joint reaches 85.1%. There are many dimples on the tensile fracture surface, and the joint obviously presents the characteristic of ductile fracture. The electrochemical corrosion performance and resistance to intergranular corrosion of weldment in AW condition are higher than that of the BM. However, they are decreased to a certain extent after PWHT. Compared with that of the AW joint, the resistance to intergranular corrosion is slightly decreased after PWHT, and that of the HT2 joint is the best among them.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0253\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0253","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用电子束焊接6156铝合金,对接头进行了不同的焊后热处理。分别研究了焊后热处理前后焊接接头的微观组织、力学性能和腐蚀行为。结果表明,在焊接状态下,熔合区由柱状晶体和等轴晶粒组成。焊缝金属中主要存在α-Al基体相,以及一些强化相β〃(Mg2Si)和Q(Al4CuMg5Si4)。焊后热处理后,焊件中强化相的数量大大增加,其分布也得到改善。焊接接头在AW状态下的抗拉强度为母材抗拉强度的65.8%。HT2热处理后,接头的强度系数达到85.1%,拉伸断口上有许多凹坑,接头明显呈现韧性断裂特征。焊件在AW条件下的电化学腐蚀性能和抗晶间腐蚀性能均高于BM,但焊后热处理后电化学腐蚀性能有所下降。与AW接头相比,焊后热处理后的抗晶间腐蚀性能略有下降,其中HT2接头的抗晶内腐蚀性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of post-weld heat treatment on 6156 aluminum alloy joint formed by electron beam welding
Abstract The 6156 aluminum alloy is welded by electron beam welding, and different post-weld heat treatments (PWHTs) are carried out on the joints. The microstructure, mechanical property, and corrosion behavior of the welded joint before and after PWHT are investigated, respectively. Results show that the fusion zone is composed of columnar crystal and equiaxed grain in as-welded (AW) condition. There are mainly α-Al matrix phase, and some strengthening phases β″(Mg2Si) and Q(Al4CuMg5Si4) in weld metal. After PWHT, the quantity of strengthening phases in weldment is greatly increased, and their distribution is also improved. The tensile strength of welded joint is 65.8% of that of the base metal (BM) in AW condition. After the heat treatment of HT2, the strength coefficient of joint reaches 85.1%. There are many dimples on the tensile fracture surface, and the joint obviously presents the characteristic of ductile fracture. The electrochemical corrosion performance and resistance to intergranular corrosion of weldment in AW condition are higher than that of the BM. However, they are decreased to a certain extent after PWHT. Compared with that of the AW joint, the resistance to intergranular corrosion is slightly decreased after PWHT, and that of the HT2 joint is the best among them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature Materials and Processes
High Temperature Materials and Processes 工程技术-材料科学:综合
CiteScore
2.50
自引率
0.00%
发文量
42
审稿时长
3.9 months
期刊介绍: High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities. Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.
期刊最新文献
De-chlorination of poly(vinyl) chloride using Fe2O3 and the improvement of chlorine fixing ratio in FeCl2 by SiO2 addition Transfer and transformation mechanism of chromium in stainless steel slag in pedosphere Study on the cladding path during the solidification process of multi-layer cladding of large steel ingots Al–Si–Fe alloy-based phase change material for high-temperature thermal energy storage Research on the behaviour and mechanism of void welding based on multiple scales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1