柴油发电机组传动系停机过程对发电机轴承寿命的影响

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Advances in Mechanical Engineering Pub Date : 2023-08-01 DOI:10.1177/16878132231190062
Shizhe Song, Yan Huang, Chunrong Hua, Dawei Dong, Bing Yan
{"title":"柴油发电机组传动系停机过程对发电机轴承寿命的影响","authors":"Shizhe Song, Yan Huang, Chunrong Hua, Dawei Dong, Bing Yan","doi":"10.1177/16878132231190062","DOIUrl":null,"url":null,"abstract":"Diesel generator sets are commonly used as power sources in transportation due to their versatility and cost-effectiveness. During the shutdown process, the diesel engine’s cylinder compression pressure would cause forced vibration in the driveline system through the crank linkage mechanism, resulting in unsteady loads that pose a threat to the bearing life. To address this issue, a coupling forward design method is proposed that takes into account the impact of unsteady loads on bearing life. An experiment was conducted on a 16V280 diesel generator set shutdown process, and a driveline dynamic model was established. The cumulative damage value that connects unsteady loads and bearing life was introduced to quantify the effect of unsteady loads on the bearing life during the shutdown process. The unsteady loads included torque fluctuation and collision forces. The results showed that reducing the driveline key gap and increasing the coupling stiffness can decrease the combined load on bearings and improve bearing life. A large stiffness coupling was designed to achieve shutdown smoothness and a 43.19% reduction in bearing life damage, confirming the design method’s feasibility concerning bearing life.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the shutdown process of the driveline on the generator bearing life in the diesel generator set\",\"authors\":\"Shizhe Song, Yan Huang, Chunrong Hua, Dawei Dong, Bing Yan\",\"doi\":\"10.1177/16878132231190062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diesel generator sets are commonly used as power sources in transportation due to their versatility and cost-effectiveness. During the shutdown process, the diesel engine’s cylinder compression pressure would cause forced vibration in the driveline system through the crank linkage mechanism, resulting in unsteady loads that pose a threat to the bearing life. To address this issue, a coupling forward design method is proposed that takes into account the impact of unsteady loads on bearing life. An experiment was conducted on a 16V280 diesel generator set shutdown process, and a driveline dynamic model was established. The cumulative damage value that connects unsteady loads and bearing life was introduced to quantify the effect of unsteady loads on the bearing life during the shutdown process. The unsteady loads included torque fluctuation and collision forces. The results showed that reducing the driveline key gap and increasing the coupling stiffness can decrease the combined load on bearings and improve bearing life. A large stiffness coupling was designed to achieve shutdown smoothness and a 43.19% reduction in bearing life damage, confirming the design method’s feasibility concerning bearing life.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231190062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231190062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

柴油发电机组由于其多功能性和成本效益,通常用作交通运输中的动力源。在停机过程中,柴油发动机的气缸压缩压力会通过曲柄连杆机构在传动系统中引起强迫振动,导致不稳定负载,从而威胁轴承寿命。为了解决这个问题,提出了一种耦合正向设计方法,该方法考虑了非稳定载荷对轴承寿命的影响。对16V280柴油发电机组停机过程进行了试验研究,建立了传动系动力学模型。引入了连接非稳态载荷和轴承寿命的累积损伤值,以量化非稳态载荷对停机过程中轴承寿命的影响。非稳定载荷包括扭矩波动和碰撞力。结果表明,减小传动系键隙,提高联轴器刚度,可以降低轴承的组合载荷,提高轴承的使用寿命。设计了一个大刚度联轴器,以实现停机平稳性和轴承寿命损伤减少43.19%,证实了该设计方法在轴承寿命方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the shutdown process of the driveline on the generator bearing life in the diesel generator set
Diesel generator sets are commonly used as power sources in transportation due to their versatility and cost-effectiveness. During the shutdown process, the diesel engine’s cylinder compression pressure would cause forced vibration in the driveline system through the crank linkage mechanism, resulting in unsteady loads that pose a threat to the bearing life. To address this issue, a coupling forward design method is proposed that takes into account the impact of unsteady loads on bearing life. An experiment was conducted on a 16V280 diesel generator set shutdown process, and a driveline dynamic model was established. The cumulative damage value that connects unsteady loads and bearing life was introduced to quantify the effect of unsteady loads on the bearing life during the shutdown process. The unsteady loads included torque fluctuation and collision forces. The results showed that reducing the driveline key gap and increasing the coupling stiffness can decrease the combined load on bearings and improve bearing life. A large stiffness coupling was designed to achieve shutdown smoothness and a 43.19% reduction in bearing life damage, confirming the design method’s feasibility concerning bearing life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
The development of the fuel saving control strategy for 48 V P0 system: Design and experimental investigation Abnormal noise identification of engines based on wavelet packet transform and bispectrum analysis Modeling and analysis of static and dynamic behavior of marine towed cable-array system based on the vessel motion Structural optimization of laminated leaf-like piezoelectric wind energy harvesters based on topological method Design of a novel two-degree-of-freedom translational-rotation low-frequency vibration isolation platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1