用于物联网应用的弹性WLAN系统中IEEE 802.11n和11ac双接口信道绑定下的主动接入点配置算法研究

Signals Pub Date : 2023-04-03 DOI:10.3390/signals4020015
S. Roy, N. Funabiki, Md. Mahbubur Rahman, Bing-Syue Wu, M. Kuribayashi, W. Kao
{"title":"用于物联网应用的弹性WLAN系统中IEEE 802.11n和11ac双接口信道绑定下的主动接入点配置算法研究","authors":"S. Roy, N. Funabiki, Md. Mahbubur Rahman, Bing-Syue Wu, M. Kuribayashi, W. Kao","doi":"10.3390/signals4020015","DOIUrl":null,"url":null,"abstract":"Currently, Internet of Things (IoT) has become common in various applications, including smart factories, smart cities, and smart homes. In them, wireless local-area networks (WLANs) are widely used due to their high-speed data transfer, flexible coverage ranges, and low costs. To enhance the performance, the WLAN configuration should be optimized in dense WLAN environments where multiple access points (APs) and hosts exist. Previously, we have studied the active AP configuration algorithm for dual interfaces using IEEE802.11n and 11ac protocols at each AP under non-channel bonding (non-CB). In this paper, we study the algorithm considering the channel bonding (CB) to enhance its capacity by bonding two channels together. To improve the throughput estimation accuracy of the algorithm, the reduction factor is introduced at contending hosts for the same AP. For evaluations, we conducted extensive experiments using the WIMENT simulator and the testbed system using Raspberry Pi 4B APs. The results show that the estimated throughput is well matched with the measured one, and the proposal achieves the higher throughput with a smaller number of active APs than the previous configurations.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of the Active Access-Point Configuration Algorithm under Channel Bonding to Dual IEEE 802.11n and 11ac Interfaces in an Elastic WLAN System for IoT Applications\",\"authors\":\"S. Roy, N. Funabiki, Md. Mahbubur Rahman, Bing-Syue Wu, M. Kuribayashi, W. Kao\",\"doi\":\"10.3390/signals4020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, Internet of Things (IoT) has become common in various applications, including smart factories, smart cities, and smart homes. In them, wireless local-area networks (WLANs) are widely used due to their high-speed data transfer, flexible coverage ranges, and low costs. To enhance the performance, the WLAN configuration should be optimized in dense WLAN environments where multiple access points (APs) and hosts exist. Previously, we have studied the active AP configuration algorithm for dual interfaces using IEEE802.11n and 11ac protocols at each AP under non-channel bonding (non-CB). In this paper, we study the algorithm considering the channel bonding (CB) to enhance its capacity by bonding two channels together. To improve the throughput estimation accuracy of the algorithm, the reduction factor is introduced at contending hosts for the same AP. For evaluations, we conducted extensive experiments using the WIMENT simulator and the testbed system using Raspberry Pi 4B APs. The results show that the estimated throughput is well matched with the measured one, and the proposal achieves the higher throughput with a smaller number of active APs than the previous configurations.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals4020015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,物联网(IoT)已经在智能工厂、智能城市和智能家居等各种应用中变得普遍。其中,无线局域网(wlan)以其数据传输速度快、覆盖范围灵活、成本低等优点得到了广泛的应用。为了提高性能,需要在存在多个接入点和主机的密集WLAN环境中优化WLAN配置。在此之前,我们研究了在非信道绑定(non-channel bonding)下每个AP使用IEEE802.11n和11ac协议的双接口active AP配置算法。本文研究了考虑信道绑定(CB)的算法,通过将两个信道绑定在一起来提高信道容量。为了提高算法的吞吐量估计精度,在同一AP的竞争主机上引入了减少因子。为了进行评估,我们使用WIMENT模拟器和使用Raspberry Pi 4B AP的测试平台系统进行了广泛的实验。结果表明,估计的吞吐量与实测的吞吐量匹配良好,与之前的配置相比,该方案在活动ap数量较少的情况下实现了更高的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of the Active Access-Point Configuration Algorithm under Channel Bonding to Dual IEEE 802.11n and 11ac Interfaces in an Elastic WLAN System for IoT Applications
Currently, Internet of Things (IoT) has become common in various applications, including smart factories, smart cities, and smart homes. In them, wireless local-area networks (WLANs) are widely used due to their high-speed data transfer, flexible coverage ranges, and low costs. To enhance the performance, the WLAN configuration should be optimized in dense WLAN environments where multiple access points (APs) and hosts exist. Previously, we have studied the active AP configuration algorithm for dual interfaces using IEEE802.11n and 11ac protocols at each AP under non-channel bonding (non-CB). In this paper, we study the algorithm considering the channel bonding (CB) to enhance its capacity by bonding two channels together. To improve the throughput estimation accuracy of the algorithm, the reduction factor is introduced at contending hosts for the same AP. For evaluations, we conducted extensive experiments using the WIMENT simulator and the testbed system using Raspberry Pi 4B APs. The results show that the estimated throughput is well matched with the measured one, and the proposal achieves the higher throughput with a smaller number of active APs than the previous configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1