{"title":"具有平面内均匀应力和反平面弹性的三相抛物型不均匀性","authors":"X. Wang, P. Schiavone","doi":"10.24423/AOM.3371","DOIUrl":null,"url":null,"abstract":"We examine the in-plane and anti-plane stress states inside a parabolic inhomogeneity which is bonded to an infinite matrix through an intermediate coating. The interfaces of the three-phase parabolic inhomogeneity are two confocal parabolas. The corresponding boundary value problems are studied in the physical plane rather than in the image plane. A simple condition is found that ensures that the internal stress state inside the parabolic inhomogeneity is uniform and hydrostatic. Furthermore, this condition is independent of the elastic properties of the coating and the two geometric parameters of the composite: in fact, the condition depends only on the elastic constants of the inhomogeneity and the matrix and the ratio between the two remote principal stresses. Once this condition is met, the mean stress in the coating is constant and the hoop stress on the coating side is also uniform along the entire inhomogeneity-coating interface. The unconditional uniformity of stresses inside a three-phase parabolic inhomogeneity is achieved when the matrix is subjected to uniform remote anti-plane shear stresses. The internal uniform anti-plane shear stresses inside the inhomogeneity are independent of the shear modulus of the coating and the two geometric parameters of the composite.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"27-38"},"PeriodicalIF":1.1000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-phase parabolic inhomogeneities with internal uniform stresses in plane and anti-plane elasticity\",\"authors\":\"X. Wang, P. Schiavone\",\"doi\":\"10.24423/AOM.3371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the in-plane and anti-plane stress states inside a parabolic inhomogeneity which is bonded to an infinite matrix through an intermediate coating. The interfaces of the three-phase parabolic inhomogeneity are two confocal parabolas. The corresponding boundary value problems are studied in the physical plane rather than in the image plane. A simple condition is found that ensures that the internal stress state inside the parabolic inhomogeneity is uniform and hydrostatic. Furthermore, this condition is independent of the elastic properties of the coating and the two geometric parameters of the composite: in fact, the condition depends only on the elastic constants of the inhomogeneity and the matrix and the ratio between the two remote principal stresses. Once this condition is met, the mean stress in the coating is constant and the hoop stress on the coating side is also uniform along the entire inhomogeneity-coating interface. The unconditional uniformity of stresses inside a three-phase parabolic inhomogeneity is achieved when the matrix is subjected to uniform remote anti-plane shear stresses. The internal uniform anti-plane shear stresses inside the inhomogeneity are independent of the shear modulus of the coating and the two geometric parameters of the composite.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"72 1\",\"pages\":\"27-38\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3371\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3371","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Three-phase parabolic inhomogeneities with internal uniform stresses in plane and anti-plane elasticity
We examine the in-plane and anti-plane stress states inside a parabolic inhomogeneity which is bonded to an infinite matrix through an intermediate coating. The interfaces of the three-phase parabolic inhomogeneity are two confocal parabolas. The corresponding boundary value problems are studied in the physical plane rather than in the image plane. A simple condition is found that ensures that the internal stress state inside the parabolic inhomogeneity is uniform and hydrostatic. Furthermore, this condition is independent of the elastic properties of the coating and the two geometric parameters of the composite: in fact, the condition depends only on the elastic constants of the inhomogeneity and the matrix and the ratio between the two remote principal stresses. Once this condition is met, the mean stress in the coating is constant and the hoop stress on the coating side is also uniform along the entire inhomogeneity-coating interface. The unconditional uniformity of stresses inside a three-phase parabolic inhomogeneity is achieved when the matrix is subjected to uniform remote anti-plane shear stresses. The internal uniform anti-plane shear stresses inside the inhomogeneity are independent of the shear modulus of the coating and the two geometric parameters of the composite.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.