{"title":"升温速率、粒度、好氧气氛和流量对华甸油页岩热解特性的影响","authors":"Lili Li, Fuqun Zhang, Haibo Wang","doi":"10.3103/S0361521923030047","DOIUrl":null,"url":null,"abstract":"<p>To master the pyrolysis characteristics of oil shale under diverse conditions, we analyzed Huadian oil shale by TG-DTA, FT-IR, and XRD, and compared the effects of heating rate, gas flow rate, pyrolysis atmosphere, and particle size on its pyrolysis behavior. The results show that when the heating rate increases from 5 to 15°C/min, the corresponding temperature increases from 439.1 to 461.6°C, and the mass loss rate increases from 12.42% to 13.51%. When the particle size increased from 0.075 to 0.355 mm, the maximum mass loss rate temperature, termination temperature, and mass loss rate increased, but the initial temperature decreased from 336.1 to 275.8°C. When the oxygen concentration increased from 10 to 30%, the initial temperature, maximum mass loss rate temperature, and termination temperature decreased with the increase of oxygen concentration, but the mass loss rate increased from 17.25 to 17.69%, as well as when the gas flow rate increased from 30 to 100 mL/min, the termination temperature and mass loss rate increased, but the initial temperature decreased from 366.5 to 303.9°C. The Coats-Redfern method was used to calculate the pyrolysis kinetics parameters at different heating rates and different particle sizes. The results show the activation energy increases with increasing heating rates while decreasing with increasing particle sizes. This study is of great significance in optimizing the thermal conversion process of Huadian oil shale as raw material.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Heating Rate, Particle Size, Aerobic Atmosphere, and Flow Rate on the Pyrolysis Characteristics of Huadian Oil Shale\",\"authors\":\"Lili Li, Fuqun Zhang, Haibo Wang\",\"doi\":\"10.3103/S0361521923030047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To master the pyrolysis characteristics of oil shale under diverse conditions, we analyzed Huadian oil shale by TG-DTA, FT-IR, and XRD, and compared the effects of heating rate, gas flow rate, pyrolysis atmosphere, and particle size on its pyrolysis behavior. The results show that when the heating rate increases from 5 to 15°C/min, the corresponding temperature increases from 439.1 to 461.6°C, and the mass loss rate increases from 12.42% to 13.51%. When the particle size increased from 0.075 to 0.355 mm, the maximum mass loss rate temperature, termination temperature, and mass loss rate increased, but the initial temperature decreased from 336.1 to 275.8°C. When the oxygen concentration increased from 10 to 30%, the initial temperature, maximum mass loss rate temperature, and termination temperature decreased with the increase of oxygen concentration, but the mass loss rate increased from 17.25 to 17.69%, as well as when the gas flow rate increased from 30 to 100 mL/min, the termination temperature and mass loss rate increased, but the initial temperature decreased from 366.5 to 303.9°C. The Coats-Redfern method was used to calculate the pyrolysis kinetics parameters at different heating rates and different particle sizes. The results show the activation energy increases with increasing heating rates while decreasing with increasing particle sizes. This study is of great significance in optimizing the thermal conversion process of Huadian oil shale as raw material.</p>\",\"PeriodicalId\":779,\"journal\":{\"name\":\"Solid Fuel Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Fuel Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0361521923030047\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521923030047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Heating Rate, Particle Size, Aerobic Atmosphere, and Flow Rate on the Pyrolysis Characteristics of Huadian Oil Shale
To master the pyrolysis characteristics of oil shale under diverse conditions, we analyzed Huadian oil shale by TG-DTA, FT-IR, and XRD, and compared the effects of heating rate, gas flow rate, pyrolysis atmosphere, and particle size on its pyrolysis behavior. The results show that when the heating rate increases from 5 to 15°C/min, the corresponding temperature increases from 439.1 to 461.6°C, and the mass loss rate increases from 12.42% to 13.51%. When the particle size increased from 0.075 to 0.355 mm, the maximum mass loss rate temperature, termination temperature, and mass loss rate increased, but the initial temperature decreased from 336.1 to 275.8°C. When the oxygen concentration increased from 10 to 30%, the initial temperature, maximum mass loss rate temperature, and termination temperature decreased with the increase of oxygen concentration, but the mass loss rate increased from 17.25 to 17.69%, as well as when the gas flow rate increased from 30 to 100 mL/min, the termination temperature and mass loss rate increased, but the initial temperature decreased from 366.5 to 303.9°C. The Coats-Redfern method was used to calculate the pyrolysis kinetics parameters at different heating rates and different particle sizes. The results show the activation energy increases with increasing heating rates while decreasing with increasing particle sizes. This study is of great significance in optimizing the thermal conversion process of Huadian oil shale as raw material.
期刊介绍:
The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.