短期电能消耗的并行进化双聚类

D. Pinto-Roa, H. Medina, Federico Román, M. García-Torres, F. Divina, Francisco Gómez-Vela, Félix Morales, Gustavo Velázquez, Federico Daumas, José L. Vázquez-Noguera, Carlos Sauer Ayala, P. E. Gardel-Sotomayor
{"title":"短期电能消耗的并行进化双聚类","authors":"D. Pinto-Roa, H. Medina, Federico Román, M. García-Torres, F. Divina, Francisco Gómez-Vela, Félix Morales, Gustavo Velázquez, Federico Daumas, José L. Vázquez-Noguera, Carlos Sauer Ayala, P. E. Gardel-Sotomayor","doi":"10.5121/CSIT.2021.111110","DOIUrl":null,"url":null,"abstract":"The discovery and description of patterns in electric energy consumption time series is fundamental for timely management of the system. A bicluster describes a subset of observation points in a time period in which a consumption pattern occurs as abrupt changes or instabilities homogeneously. Nevertheless, the pattern detection complexity increases with the number of observation points and samples of the study period. In this context, current bi-clustering techniques may not detect significant patterns given the increased search space. This study develops a parallel evolutionary computation scheme to find biclusters in electric energy. Numerical simulations show the benefits of the proposed approach, discovering significantly more electricity consumption patterns compared to a state-of-the-art non-parallel competitive algorithm.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Evolutionary Biclustering of Short-term Electric Energy Consumption\",\"authors\":\"D. Pinto-Roa, H. Medina, Federico Román, M. García-Torres, F. Divina, Francisco Gómez-Vela, Félix Morales, Gustavo Velázquez, Federico Daumas, José L. Vázquez-Noguera, Carlos Sauer Ayala, P. E. Gardel-Sotomayor\",\"doi\":\"10.5121/CSIT.2021.111110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery and description of patterns in electric energy consumption time series is fundamental for timely management of the system. A bicluster describes a subset of observation points in a time period in which a consumption pattern occurs as abrupt changes or instabilities homogeneously. Nevertheless, the pattern detection complexity increases with the number of observation points and samples of the study period. In this context, current bi-clustering techniques may not detect significant patterns given the increased search space. This study develops a parallel evolutionary computation scheme to find biclusters in electric energy. Numerical simulations show the benefits of the proposed approach, discovering significantly more electricity consumption patterns compared to a state-of-the-art non-parallel competitive algorithm.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/CSIT.2021.111110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2021.111110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电能消耗时间序列模式的发现和描述是系统及时管理的基础。双聚类描述了一个时间段内的观察点子集,在这个时间段内,消费模式均匀地发生突变或不稳定。然而,模式检测的复杂度随着观察点和研究周期样本的增加而增加。在这种情况下,鉴于搜索空间的增加,当前的双聚类技术可能无法检测到重要模式。本文提出了一种并行进化计算方法来寻找电能中的双簇。数值模拟显示了所提出方法的优点,与最先进的非并行竞争算法相比,发现了更多的电力消耗模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Evolutionary Biclustering of Short-term Electric Energy Consumption
The discovery and description of patterns in electric energy consumption time series is fundamental for timely management of the system. A bicluster describes a subset of observation points in a time period in which a consumption pattern occurs as abrupt changes or instabilities homogeneously. Nevertheless, the pattern detection complexity increases with the number of observation points and samples of the study period. In this context, current bi-clustering techniques may not detect significant patterns given the increased search space. This study develops a parallel evolutionary computation scheme to find biclusters in electric energy. Numerical simulations show the benefits of the proposed approach, discovering significantly more electricity consumption patterns compared to a state-of-the-art non-parallel competitive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis Lattice Based Group Key Exchange Protocol in the Standard Model The 5 Dimensions of Problem Solving using DINNA Diagram: Double Ishikawa and Naze Naze Analysis Appraisal Study of Similarity-Based and Embedding-Based Link Prediction Methods on Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1