Qingmin Liu, S. Hou, Jie Dong, J. Lei, Gang Wu, Zuyong Yan
{"title":"基于表面等离子体共振的D型微结构光纤温度传感器","authors":"Qingmin Liu, S. Hou, Jie Dong, J. Lei, Gang Wu, Zuyong Yan","doi":"10.35848/1347-4065/acf69e","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of oxidation of the metal film coated on the outer surface of the photonic crystal fiber and the low sensitivity of the sensor, a side polishing temperature sensor based on surface plasmon resonance is proposed. First, the sensor is modelled with a metal coating on the side of the optical fiber of the sensor, using a temperature sensitive liquid as the temperature sensing substance. Then, simulations were carried out to calculate the structural parameters of the optical fiber and the effect of the metal material on the resonant wavelength of the loss spectrum. By comparing the sensitive sensing of different metal films, gold was chosen as the surface plasma sensing material. Finally, the sensing characteristics of the sensor are simulated using the finite element method. The results show that when gold is used as the surface plasmon material, the wavelength range is 675–1117 nm, and the high sensitivity sensing in the temperature range of 0 °C–60 °C can be realized. When the temperature is 0 °C, the maximum spectral sensitivity is 24.6 nm °C−1. The designed sensors have excellent performance and can be widely used for temperature sensing.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-shaped microstructure fiber temperature sensor based on surface plasmon resonance\",\"authors\":\"Qingmin Liu, S. Hou, Jie Dong, J. Lei, Gang Wu, Zuyong Yan\",\"doi\":\"10.35848/1347-4065/acf69e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problems of oxidation of the metal film coated on the outer surface of the photonic crystal fiber and the low sensitivity of the sensor, a side polishing temperature sensor based on surface plasmon resonance is proposed. First, the sensor is modelled with a metal coating on the side of the optical fiber of the sensor, using a temperature sensitive liquid as the temperature sensing substance. Then, simulations were carried out to calculate the structural parameters of the optical fiber and the effect of the metal material on the resonant wavelength of the loss spectrum. By comparing the sensitive sensing of different metal films, gold was chosen as the surface plasma sensing material. Finally, the sensing characteristics of the sensor are simulated using the finite element method. The results show that when gold is used as the surface plasmon material, the wavelength range is 675–1117 nm, and the high sensitivity sensing in the temperature range of 0 °C–60 °C can be realized. When the temperature is 0 °C, the maximum spectral sensitivity is 24.6 nm °C−1. The designed sensors have excellent performance and can be widely used for temperature sensing.\",\"PeriodicalId\":14741,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/acf69e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/acf69e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
D-shaped microstructure fiber temperature sensor based on surface plasmon resonance
In order to solve the problems of oxidation of the metal film coated on the outer surface of the photonic crystal fiber and the low sensitivity of the sensor, a side polishing temperature sensor based on surface plasmon resonance is proposed. First, the sensor is modelled with a metal coating on the side of the optical fiber of the sensor, using a temperature sensitive liquid as the temperature sensing substance. Then, simulations were carried out to calculate the structural parameters of the optical fiber and the effect of the metal material on the resonant wavelength of the loss spectrum. By comparing the sensitive sensing of different metal films, gold was chosen as the surface plasma sensing material. Finally, the sensing characteristics of the sensor are simulated using the finite element method. The results show that when gold is used as the surface plasmon material, the wavelength range is 675–1117 nm, and the high sensitivity sensing in the temperature range of 0 °C–60 °C can be realized. When the temperature is 0 °C, the maximum spectral sensitivity is 24.6 nm °C−1. The designed sensors have excellent performance and can be widely used for temperature sensing.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS