{"title":"前言","authors":"S. Silvestri","doi":"10.1080/0147037x.2018.1453689","DOIUrl":null,"url":null,"abstract":"Knowledge of the development and evolution of the neural crest sheds light on many of the oldest questions in developmental and evolutionary biology. What is the role of germ layers in early embryogenesis? How does the nervous system develop? How does the vertebrate head arise developmentally, and how did it arise evolutionarily? How did the vertebrate dorsal nervous system, heart, skeleton, teeth (and the neural crest itself) originate? How do growth factors and Hox genes direct cell differentiation and embryonic patterning? What goes wrong if development is misdirected by mutations, or if embryos are exposed to exogenous agents such as drugs, alcohol, or excess vitamin A (retinoic acid)? Twenty years ago, I was instrumental in organizing the publication of a facsimile reprint of the classic monograph by Sven Hörstadius, The Neural Crest: Its properties and derivatives in the light of experimental research, originally published in 1950. Included with the reprint was an analysis of subsequent studies on the neural crest and its derivatives. A decade later, the first edition of this book was published (Hall, 1999a). The explosion of interest in and knowledge of the neural crest over the past decade prompted me to write this second edition. As in my 1988 overview of the reprinting of ‘Hörstadius’—as his book is known to many—and as in the first edition of this book, I take a broad approach in dealing with the discovery, embryological and evolutionary origins, migration, differentiation and cellular derivatives of the neural crest. Cells from the neural crest are associated with many developmental abnormalities, many of which have their origins in a defective neural crest (NC) or in defective neural crest cells (NCCs). The book would be incomplete without discussing neurocristopathies—those tumors and syndromes involving NCCs or those birth defects in which NCCs play a role. The book is organized into three parts. Part I (Discovery and Origins) begins with a chapter devoted to the discovery of the neural crest and the impact of that discovery on entrenched notions of germlayer specificity and the germ-layer theory, a theory that placed a straitjacket around embryology and evolution for almost a century. Primary and secondary neurulation and the neural crest as the fourth germ layer are introduced in this chapter. In Chapter 2, I discuss the embryological origins of the neural crest, including the identification of future NCCs in gastrula-stage embryos; molecular and cellular","PeriodicalId":41737,"journal":{"name":"Ming Studies","volume":" ","pages":"1 - 1"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0147037x.2018.1453689","citationCount":"0","resultStr":"{\"title\":\"Preface\",\"authors\":\"S. Silvestri\",\"doi\":\"10.1080/0147037x.2018.1453689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of the development and evolution of the neural crest sheds light on many of the oldest questions in developmental and evolutionary biology. What is the role of germ layers in early embryogenesis? How does the nervous system develop? How does the vertebrate head arise developmentally, and how did it arise evolutionarily? How did the vertebrate dorsal nervous system, heart, skeleton, teeth (and the neural crest itself) originate? How do growth factors and Hox genes direct cell differentiation and embryonic patterning? What goes wrong if development is misdirected by mutations, or if embryos are exposed to exogenous agents such as drugs, alcohol, or excess vitamin A (retinoic acid)? Twenty years ago, I was instrumental in organizing the publication of a facsimile reprint of the classic monograph by Sven Hörstadius, The Neural Crest: Its properties and derivatives in the light of experimental research, originally published in 1950. Included with the reprint was an analysis of subsequent studies on the neural crest and its derivatives. A decade later, the first edition of this book was published (Hall, 1999a). The explosion of interest in and knowledge of the neural crest over the past decade prompted me to write this second edition. As in my 1988 overview of the reprinting of ‘Hörstadius’—as his book is known to many—and as in the first edition of this book, I take a broad approach in dealing with the discovery, embryological and evolutionary origins, migration, differentiation and cellular derivatives of the neural crest. Cells from the neural crest are associated with many developmental abnormalities, many of which have their origins in a defective neural crest (NC) or in defective neural crest cells (NCCs). The book would be incomplete without discussing neurocristopathies—those tumors and syndromes involving NCCs or those birth defects in which NCCs play a role. The book is organized into three parts. Part I (Discovery and Origins) begins with a chapter devoted to the discovery of the neural crest and the impact of that discovery on entrenched notions of germlayer specificity and the germ-layer theory, a theory that placed a straitjacket around embryology and evolution for almost a century. Primary and secondary neurulation and the neural crest as the fourth germ layer are introduced in this chapter. In Chapter 2, I discuss the embryological origins of the neural crest, including the identification of future NCCs in gastrula-stage embryos; molecular and cellular\",\"PeriodicalId\":41737,\"journal\":{\"name\":\"Ming Studies\",\"volume\":\" \",\"pages\":\"1 - 1\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0147037x.2018.1453689\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ming Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0147037x.2018.1453689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ASIAN STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ming Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0147037x.2018.1453689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ASIAN STUDIES","Score":null,"Total":0}
Knowledge of the development and evolution of the neural crest sheds light on many of the oldest questions in developmental and evolutionary biology. What is the role of germ layers in early embryogenesis? How does the nervous system develop? How does the vertebrate head arise developmentally, and how did it arise evolutionarily? How did the vertebrate dorsal nervous system, heart, skeleton, teeth (and the neural crest itself) originate? How do growth factors and Hox genes direct cell differentiation and embryonic patterning? What goes wrong if development is misdirected by mutations, or if embryos are exposed to exogenous agents such as drugs, alcohol, or excess vitamin A (retinoic acid)? Twenty years ago, I was instrumental in organizing the publication of a facsimile reprint of the classic monograph by Sven Hörstadius, The Neural Crest: Its properties and derivatives in the light of experimental research, originally published in 1950. Included with the reprint was an analysis of subsequent studies on the neural crest and its derivatives. A decade later, the first edition of this book was published (Hall, 1999a). The explosion of interest in and knowledge of the neural crest over the past decade prompted me to write this second edition. As in my 1988 overview of the reprinting of ‘Hörstadius’—as his book is known to many—and as in the first edition of this book, I take a broad approach in dealing with the discovery, embryological and evolutionary origins, migration, differentiation and cellular derivatives of the neural crest. Cells from the neural crest are associated with many developmental abnormalities, many of which have their origins in a defective neural crest (NC) or in defective neural crest cells (NCCs). The book would be incomplete without discussing neurocristopathies—those tumors and syndromes involving NCCs or those birth defects in which NCCs play a role. The book is organized into three parts. Part I (Discovery and Origins) begins with a chapter devoted to the discovery of the neural crest and the impact of that discovery on entrenched notions of germlayer specificity and the germ-layer theory, a theory that placed a straitjacket around embryology and evolution for almost a century. Primary and secondary neurulation and the neural crest as the fourth germ layer are introduced in this chapter. In Chapter 2, I discuss the embryological origins of the neural crest, including the identification of future NCCs in gastrula-stage embryos; molecular and cellular