单向无卷曲织物面内剪切-双轴拉伸耦合变形响应的表征与建模

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-05-18 DOI:10.1007/s12289-023-01757-0
John Montesano, Mehdi Ghazimoradi, Valter Carvelli
{"title":"单向无卷曲织物面内剪切-双轴拉伸耦合变形响应的表征与建模","authors":"John Montesano,&nbsp;Mehdi Ghazimoradi,&nbsp;Valter Carvelli","doi":"10.1007/s12289-023-01757-0","DOIUrl":null,"url":null,"abstract":"<div><p>The coupled biaxial tension and shear-biaxial tension deformation responses of a unidirectional non-crimp fabric (UD-NCF) was explored using a novel experimental test setup. A custom multiaxial loading system was used to subject multibranched fabric specimens to combined in-plane tension loads. Biaxial tension tests conducted with varying ratios of deformation along the orthogonal carbon fiber tow and supporting glass fiber yarn directions revealed minor tension-tension deformation coupling over the deformation range considered. Combined shear-equibiaxial tension tests were also conducted with different deformation rates along the fabric diagonal direction, where variations in the force-strain response revealed notable shear-extension coupling. A macroscopic finite element simulation model was developed for the fabric, which employed an available constitutive model that captured the anisotropic hyperelastic response of the fibers. The simulation model accurately predicted the fabric coupled shear-extension deformation for the combined shear-equibiaxial test cases and revealed that the shear angle at the specimen center was limited by the applied tension along the orthogonal fibers. The simulation model was also used to predict shear angle contours for multibranched specimens with different fiber orientations. It was demonstrated that the extent of shear deformation is sensitive to the direction of tension loads. These important findings provide an improved understanding of the coupled deformation modes for UD-NCFs, which will aid in future studies focused on their formability.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01757-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Characterizing and modelling the coupled in-plane shear-biaxial tension deformation response of unidirectional non-crimp fabrics\",\"authors\":\"John Montesano,&nbsp;Mehdi Ghazimoradi,&nbsp;Valter Carvelli\",\"doi\":\"10.1007/s12289-023-01757-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coupled biaxial tension and shear-biaxial tension deformation responses of a unidirectional non-crimp fabric (UD-NCF) was explored using a novel experimental test setup. A custom multiaxial loading system was used to subject multibranched fabric specimens to combined in-plane tension loads. Biaxial tension tests conducted with varying ratios of deformation along the orthogonal carbon fiber tow and supporting glass fiber yarn directions revealed minor tension-tension deformation coupling over the deformation range considered. Combined shear-equibiaxial tension tests were also conducted with different deformation rates along the fabric diagonal direction, where variations in the force-strain response revealed notable shear-extension coupling. A macroscopic finite element simulation model was developed for the fabric, which employed an available constitutive model that captured the anisotropic hyperelastic response of the fibers. The simulation model accurately predicted the fabric coupled shear-extension deformation for the combined shear-equibiaxial test cases and revealed that the shear angle at the specimen center was limited by the applied tension along the orthogonal fibers. The simulation model was also used to predict shear angle contours for multibranched specimens with different fiber orientations. It was demonstrated that the extent of shear deformation is sensitive to the direction of tension loads. These important findings provide an improved understanding of the coupled deformation modes for UD-NCFs, which will aid in future studies focused on their formability.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-023-01757-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01757-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01757-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

采用一种新颖的实验装置,研究了单向无卷曲织物的双轴拉伸和剪切-双轴拉伸耦合变形响应。采用自定义的多轴加载系统对多支织物试样进行面内联合张力加载。沿正交碳纤维束和支撑玻璃纤维纱方向进行的不同变形比的双轴拉伸试验表明,在考虑的变形范围内,拉伸-张力变形耦合较小。在织物对角线方向上进行了不同变形速率的剪切-等双轴联合拉伸试验,其中力-应变响应的变化显示出明显的剪切-拉伸耦合。利用现有的本构模型,建立了织物的宏观有限元仿真模型,该模型能够捕捉纤维的各向异性超弹性响应。仿真模型准确地预测了剪切-等双轴组合试验用例的织物耦合剪切-拉伸变形,揭示了试件中心剪切角受沿正交纤维方向施加的拉力限制。利用仿真模型预测了不同纤维取向的多支试样剪切角轮廓。结果表明,剪切变形程度对拉伸载荷方向敏感。这些重要的发现为ud - nfc的耦合变形模式提供了更好的理解,这将有助于未来对其成形性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing and modelling the coupled in-plane shear-biaxial tension deformation response of unidirectional non-crimp fabrics

The coupled biaxial tension and shear-biaxial tension deformation responses of a unidirectional non-crimp fabric (UD-NCF) was explored using a novel experimental test setup. A custom multiaxial loading system was used to subject multibranched fabric specimens to combined in-plane tension loads. Biaxial tension tests conducted with varying ratios of deformation along the orthogonal carbon fiber tow and supporting glass fiber yarn directions revealed minor tension-tension deformation coupling over the deformation range considered. Combined shear-equibiaxial tension tests were also conducted with different deformation rates along the fabric diagonal direction, where variations in the force-strain response revealed notable shear-extension coupling. A macroscopic finite element simulation model was developed for the fabric, which employed an available constitutive model that captured the anisotropic hyperelastic response of the fibers. The simulation model accurately predicted the fabric coupled shear-extension deformation for the combined shear-equibiaxial test cases and revealed that the shear angle at the specimen center was limited by the applied tension along the orthogonal fibers. The simulation model was also used to predict shear angle contours for multibranched specimens with different fiber orientations. It was demonstrated that the extent of shear deformation is sensitive to the direction of tension loads. These important findings provide an improved understanding of the coupled deformation modes for UD-NCFs, which will aid in future studies focused on their formability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Influence of spindle speeds on the formability, microstructure, mechanical properties and fracture behaviour of Ti-6Al-4V alloy foils during single point micro incremental forming (SPMIF) process The effects of network reinforcement distribution on the mechanical properties and cutting behavior of SiCp/Al composites Optimizing sheet metal edge quality with laser-polishing: surface characterization and performance evaluation Analysis of bending behavior of ultra-thin austenitic stainless steel sheets considering surface effect Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1