利用球面矢量波函数分析任意电磁场对多层球头模型的影响

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advanced Electromagnetics Pub Date : 2023-05-21 DOI:10.7716/aem.v12i3.1995
M. Alian, N. Noori
{"title":"利用球面矢量波函数分析任意电磁场对多层球头模型的影响","authors":"M. Alian, N. Noori","doi":"10.7716/aem.v12i3.1995","DOIUrl":null,"url":null,"abstract":"A semi-analytical method is presented for the assessment of induced electromagnetic field inside a multilayer head model exposed to radiated field of an arbitrary source antenna. First the source antenna is simulated by a full-wave software in the absence of the head model to evaluate its radiating characteristics. Then, by sampling of the source radiated fields, its spherical vector wave function (SVWF) amplitudes are evaluated. The well-known translation addition theorem for spherical vector wave functions (SVWFs) is implemented to translate radiating field SVWFs to the local coordinates system of head model. Neglecting the reaction of model on source fields, using boundary conditions on the interfaces of adjacent layers, the unknown SVWF amplitudes of the fields inside each layer as well as those of the scattered field outside the head model are evaluated. Some numerical examples are presented for the verification of the proposed method. The acceptable consistency between the results obtained by the proposed method and full-wave simulations of the problem verifies the authenticity of the proposed method. In comparison to a full-wave numerical method, the proposed method provides an efficient repeatable simulation approach due to the independency of the source and head model analyses.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Arbitrary EM Field Exposure to a Multilayer Spherical Head Model Using Spherical Vector Wave Functions\",\"authors\":\"M. Alian, N. Noori\",\"doi\":\"10.7716/aem.v12i3.1995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-analytical method is presented for the assessment of induced electromagnetic field inside a multilayer head model exposed to radiated field of an arbitrary source antenna. First the source antenna is simulated by a full-wave software in the absence of the head model to evaluate its radiating characteristics. Then, by sampling of the source radiated fields, its spherical vector wave function (SVWF) amplitudes are evaluated. The well-known translation addition theorem for spherical vector wave functions (SVWFs) is implemented to translate radiating field SVWFs to the local coordinates system of head model. Neglecting the reaction of model on source fields, using boundary conditions on the interfaces of adjacent layers, the unknown SVWF amplitudes of the fields inside each layer as well as those of the scattered field outside the head model are evaluated. Some numerical examples are presented for the verification of the proposed method. The acceptable consistency between the results obtained by the proposed method and full-wave simulations of the problem verifies the authenticity of the proposed method. In comparison to a full-wave numerical method, the proposed method provides an efficient repeatable simulation approach due to the independency of the source and head model analyses.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v12i3.1995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v12i3.1995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种半解析方法来评估暴露于任意源天线辐射场的多层头部模型内的感应电磁场。首先,在没有头部模型的情况下,用全波软件模拟源天线,以评估其辐射特性。然后,通过对源辐射场的采样,评估了其球面矢量波函数(SVWF)的振幅。实现了著名的球面矢量波函数平移加法定理,将辐射场SVWFs平移到头部模型的局部坐标系。忽略模型对源场的反应,利用相邻层界面上的边界条件,评估了每层内部场的未知SVWF振幅以及头部模型外部散射场的振幅。通过算例验证了该方法的正确性。通过所提出的方法获得的结果与问题的全波模拟之间的可接受的一致性验证了所提出方法的真实性。与全波数值方法相比,由于震源和水头模型分析的独立性,所提出的方法提供了一种有效的可重复模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Arbitrary EM Field Exposure to a Multilayer Spherical Head Model Using Spherical Vector Wave Functions
A semi-analytical method is presented for the assessment of induced electromagnetic field inside a multilayer head model exposed to radiated field of an arbitrary source antenna. First the source antenna is simulated by a full-wave software in the absence of the head model to evaluate its radiating characteristics. Then, by sampling of the source radiated fields, its spherical vector wave function (SVWF) amplitudes are evaluated. The well-known translation addition theorem for spherical vector wave functions (SVWFs) is implemented to translate radiating field SVWFs to the local coordinates system of head model. Neglecting the reaction of model on source fields, using boundary conditions on the interfaces of adjacent layers, the unknown SVWF amplitudes of the fields inside each layer as well as those of the scattered field outside the head model are evaluated. Some numerical examples are presented for the verification of the proposed method. The acceptable consistency between the results obtained by the proposed method and full-wave simulations of the problem verifies the authenticity of the proposed method. In comparison to a full-wave numerical method, the proposed method provides an efficient repeatable simulation approach due to the independency of the source and head model analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electromagnetics
Advanced Electromagnetics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
12.50%
发文量
33
审稿时长
10 weeks
期刊介绍: Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.
期刊最新文献
Compact CPW-fed Antenna with Controllable WLAN Band-rejection for Microwave Imaging Dual Polarized Reconfigurable MIMO Antenna for Multi-Band Functioning Radiation Pattern Correction of Faulty Planar Phased Array using Genetic Algorithm Wireless Power Transfer System with Constant Voltage/Constant Current Output Performance A Low-Profile four-port MIMO Antenna for 5G-n79 Band with high diversity performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1