{"title":"一致超图中的解析连通性:性质与计算","authors":"Chunfeng Cui, Ziyan Luo, L. Qi, Hong Yan","doi":"10.1002/nla.2468","DOIUrl":null,"url":null,"abstract":"The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analytic connectivity in uniform hypergraphs: Properties and computation\",\"authors\":\"Chunfeng Cui, Ziyan Luo, L. Qi, Hong Yan\",\"doi\":\"10.1002/nla.2468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2468\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The analytic connectivity in uniform hypergraphs: Properties and computation
The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.