微波辅助合成新型三唑基吡唑啉取代香豆素及其抑菌活性

IF 0.9 Q4 CHEMISTRY, MULTIDISCIPLINARY Current Microwave Chemistry Pub Date : 2022-01-18 DOI:10.2174/2213335609666220118102344
Kaushik N. Kundaliya, N. Patel, D. I. Brahmbhatt
{"title":"微波辅助合成新型三唑基吡唑啉取代香豆素及其抑菌活性","authors":"Kaushik N. Kundaliya, N. Patel, D. I. Brahmbhatt","doi":"10.2174/2213335609666220118102344","DOIUrl":null,"url":null,"abstract":"\n\nThe 1,2,3-triazole, pyrazole and coumarin based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. Structure of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by Broth dilution method.\n\n\n\nIn synthetic method , the targets were prepared by reaction of various 3-{3-[3-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine(5a-c) in the presence of acetic/propionic acid under microwave irradiation.\n\n\n\nThe structures of all the synthesized compounds were established by IR, 1H-NMR, 13C-APT and selected mass spectral data. The target compounds were also screen for their in vitro antimicrobial efficiency against representative panel of pathogenic strains specifically Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Fungi (Candida albicans, Aspergillus niger).\n\n\n\nIn conclusion ,the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with short reaction time. Among all the synthesized compounds ,4c,4h,6a,6h and 6l were found to have significant activity against bacterial and fungal strains.\n","PeriodicalId":43539,"journal":{"name":"Current Microwave Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Assisted Synthesis of Novel Triazolyl Pyrazolyl Pyrazoline Substituted Coumarins and their Antimicrobial Activity\",\"authors\":\"Kaushik N. Kundaliya, N. Patel, D. I. Brahmbhatt\",\"doi\":\"10.2174/2213335609666220118102344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe 1,2,3-triazole, pyrazole and coumarin based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. Structure of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by Broth dilution method.\\n\\n\\n\\nIn synthetic method , the targets were prepared by reaction of various 3-{3-[3-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine(5a-c) in the presence of acetic/propionic acid under microwave irradiation.\\n\\n\\n\\nThe structures of all the synthesized compounds were established by IR, 1H-NMR, 13C-APT and selected mass spectral data. The target compounds were also screen for their in vitro antimicrobial efficiency against representative panel of pathogenic strains specifically Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Fungi (Candida albicans, Aspergillus niger).\\n\\n\\n\\nIn conclusion ,the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with short reaction time. Among all the synthesized compounds ,4c,4h,6a,6h and 6l were found to have significant activity against bacterial and fungal strains.\\n\",\"PeriodicalId\":43539,\"journal\":{\"name\":\"Current Microwave Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microwave Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213335609666220118102344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microwave Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213335609666220118102344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以1,2,3-三唑、吡唑和香豆素为基础的衍生物因其广泛的生物学性质而受到广泛关注。介绍了微波合成新型三唑基吡唑啉取代香豆素的方法。所有新合成的化合物通过波谱分析进行了结构表征,并通过肉汤稀释法对其体外抗菌活性进行了筛选。在合成方法中,以3-{3-[3-(5-甲基-1-芳基- 1h -1,2,3-三唑-4-基)-1-苯基- 1h -吡唑-4-基]丙烯基}香豆素(香豆素查尔酮)(3a-d)与水合肼或芳基肼(5a-c)在乙酸/丙酸存在下微波辐射制备靶物。通过IR、1H-NMR、13C-APT和选定的质谱数据确定了所有合成化合物的结构。筛选目标化合物对具有代表性的病原菌,特别是革兰氏阳性菌(金黄色葡萄球菌、枯草芽孢杆菌)、革兰氏阴性菌(大肠杆菌、伤寒沙门氏菌)和真菌(白色念珠菌、黑曲霉)的体外抗菌效果。综上所述,采用微波辐照(MWI)技术可获得收率高、反应时间短的目标化合物。在所合成的化合物中,4c、4h、6a、6h和6l对细菌和真菌菌株具有显著的抑制活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microwave Assisted Synthesis of Novel Triazolyl Pyrazolyl Pyrazoline Substituted Coumarins and their Antimicrobial Activity
The 1,2,3-triazole, pyrazole and coumarin based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. Structure of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by Broth dilution method. In synthetic method , the targets were prepared by reaction of various 3-{3-[3-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine(5a-c) in the presence of acetic/propionic acid under microwave irradiation. The structures of all the synthesized compounds were established by IR, 1H-NMR, 13C-APT and selected mass spectral data. The target compounds were also screen for their in vitro antimicrobial efficiency against representative panel of pathogenic strains specifically Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Fungi (Candida albicans, Aspergillus niger). In conclusion ,the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with short reaction time. Among all the synthesized compounds ,4c,4h,6a,6h and 6l were found to have significant activity against bacterial and fungal strains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microwave Chemistry
Current Microwave Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
11
期刊最新文献
Microwave Revolution: Transforming Biomedical Synthesis for Tissue Engineering Advancements Green Synthesis of Thiazoles and Thiadiazoles Having Anticancer Activities under Microwave Irradiation Microwave-assisted Green Synthetic Approach towards Water Dispersible Luminescent PVP-coated Tb3+ and Ce3+/Tb3+ -doped KZnF3 Nanocrystals A Review of Ultrasonic Wave Propagation through Liquid Solutions Microwave-activated Synthetic Route to Various Biologically Important Heterocycles Involving Transition Metal Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1