通过单用途技术实现生物制药制造的转型:现状、挑战和未来发展。

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2022-06-10 DOI:10.1146/annurev-chembioeng-092220-030223
Jasmin J. Samaras, M. Micheletti, W. Ding
{"title":"通过单用途技术实现生物制药制造的转型:现状、挑战和未来发展。","authors":"Jasmin J. Samaras, M. Micheletti, W. Ding","doi":"10.1146/annurev-chembioeng-092220-030223","DOIUrl":null,"url":null,"abstract":"Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 1","pages":"73-97"},"PeriodicalIF":7.6000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development.\",\"authors\":\"Jasmin J. Samaras, M. Micheletti, W. Ding\",\"doi\":\"10.1146/annurev-chembioeng-092220-030223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\"13 1\",\"pages\":\"73-97\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-092220-030223\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092220-030223","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

一次性使用技术已经改变了传统的生物制药生产,并且它们在抗体药物偶联物以及细胞和基因治疗产品等新兴应用中的应用正在迅速增加。在2019年冠状病毒大流行期间,这些颠覆性技术也产生了重大影响,有助于推动工艺开发,使新的单克隆抗体疗法和疫苗得以生产。一次性使用系统提供封闭的即插即用解决方案,并实现过程强化和连续处理。一些挑战仍然存在,为推进一次性传感器及其与一次性系统的集成,开发新型塑料材料以及标准化互换性设计提供了机会。由于行业变化迅速,需要对当前的一次性技术进行全面分析,总结材料科学的最新进展以及这些技术在端到端生物过程中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development.
Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1