S. Kochemirovskaia, A. Fogel, M. Novomlinsky, D. Mokhorov, V. Kochemirovsky
{"title":"激光诱导合成溶液中酒石酸双金属配合物的结构与微生物传感器材料传感器特性的相关性","authors":"S. Kochemirovskaia, A. Fogel, M. Novomlinsky, D. Mokhorov, V. Kochemirovsky","doi":"10.2174/2213337210666230427101553","DOIUrl":null,"url":null,"abstract":"\n\nDetermination of diagnostically significant components of biological materials using enzyme-free microscopic sensors is an urgent scientific task, which is being worked on by a significant number of scientific groups in the world. This is due to the fact that microscopic sensor-active tracks on inert surfaces can be obtained without preliminary manufacturing of precision templates.\n\n\n\nLaser Induced Chemical Liquid Phase Deposition (LCLD) is a laser technology that allows the deposition of microsized conductive tracks from aqueous solutions of transition metal compounds at the focus of a laser beam. These tracks can be formed by one or two metals at the same time. The possibility of obtaining complexes in solution in which two different metals interact with one common coordination sphere of the ligand is of particular interest. The structure of such complexes is still insufficiently studied.\n\n\n\nThe present study supplements the missing information on tartaric acid complexes, which can simultaneously coordinate two metals, for example, copper, nickel, silver, iron, and cobalt. Heterophase LCLD demonstrates high sensory activity in the electrochemical oxidation/reduction of glucose and hydrogen peroxide. Bimetallic deposits can be obtained in two ways. The first method consists of successive precipitation from a solution containing an ion of one metal, then another on top of the first. The second way is to create a solution in which two metals and one ligand are simultaneously present. Laser deposition is carried out in one stage. In practice, the possibility of the second method is not always realized.\n\n\n\nIn the present work, the basic principles of the formation of heterophase bimetallic sensor-sensitive porous material with a highly developed surface under the action of laser radiation have been analyzed, and new reference data have been accumulated on the structure of tartrate complexes containing two metals.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The correlation between the structures of bimetallic tartrate complexes in solutions for laser-induced synthesis and sensor characteristics of microbiosensors materials\",\"authors\":\"S. Kochemirovskaia, A. Fogel, M. Novomlinsky, D. Mokhorov, V. Kochemirovsky\",\"doi\":\"10.2174/2213337210666230427101553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nDetermination of diagnostically significant components of biological materials using enzyme-free microscopic sensors is an urgent scientific task, which is being worked on by a significant number of scientific groups in the world. This is due to the fact that microscopic sensor-active tracks on inert surfaces can be obtained without preliminary manufacturing of precision templates.\\n\\n\\n\\nLaser Induced Chemical Liquid Phase Deposition (LCLD) is a laser technology that allows the deposition of microsized conductive tracks from aqueous solutions of transition metal compounds at the focus of a laser beam. These tracks can be formed by one or two metals at the same time. The possibility of obtaining complexes in solution in which two different metals interact with one common coordination sphere of the ligand is of particular interest. The structure of such complexes is still insufficiently studied.\\n\\n\\n\\nThe present study supplements the missing information on tartaric acid complexes, which can simultaneously coordinate two metals, for example, copper, nickel, silver, iron, and cobalt. Heterophase LCLD demonstrates high sensory activity in the electrochemical oxidation/reduction of glucose and hydrogen peroxide. Bimetallic deposits can be obtained in two ways. The first method consists of successive precipitation from a solution containing an ion of one metal, then another on top of the first. The second way is to create a solution in which two metals and one ligand are simultaneously present. Laser deposition is carried out in one stage. In practice, the possibility of the second method is not always realized.\\n\\n\\n\\nIn the present work, the basic principles of the formation of heterophase bimetallic sensor-sensitive porous material with a highly developed surface under the action of laser radiation have been analyzed, and new reference data have been accumulated on the structure of tartrate complexes containing two metals.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230427101553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230427101553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The correlation between the structures of bimetallic tartrate complexes in solutions for laser-induced synthesis and sensor characteristics of microbiosensors materials
Determination of diagnostically significant components of biological materials using enzyme-free microscopic sensors is an urgent scientific task, which is being worked on by a significant number of scientific groups in the world. This is due to the fact that microscopic sensor-active tracks on inert surfaces can be obtained without preliminary manufacturing of precision templates.
Laser Induced Chemical Liquid Phase Deposition (LCLD) is a laser technology that allows the deposition of microsized conductive tracks from aqueous solutions of transition metal compounds at the focus of a laser beam. These tracks can be formed by one or two metals at the same time. The possibility of obtaining complexes in solution in which two different metals interact with one common coordination sphere of the ligand is of particular interest. The structure of such complexes is still insufficiently studied.
The present study supplements the missing information on tartaric acid complexes, which can simultaneously coordinate two metals, for example, copper, nickel, silver, iron, and cobalt. Heterophase LCLD demonstrates high sensory activity in the electrochemical oxidation/reduction of glucose and hydrogen peroxide. Bimetallic deposits can be obtained in two ways. The first method consists of successive precipitation from a solution containing an ion of one metal, then another on top of the first. The second way is to create a solution in which two metals and one ligand are simultaneously present. Laser deposition is carried out in one stage. In practice, the possibility of the second method is not always realized.
In the present work, the basic principles of the formation of heterophase bimetallic sensor-sensitive porous material with a highly developed surface under the action of laser radiation have been analyzed, and new reference data have been accumulated on the structure of tartrate complexes containing two metals.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.