{"title":"研究蛋白质-配体相互作用的现代生物物理方法","authors":"P. Biswas","doi":"10.1142/S1793048018300013","DOIUrl":null,"url":null,"abstract":"Protein–ligand interactions act as a pivot to the understanding of most of the biological interactions. The study of interactions between proteins and cellular molecules has led to the establishment and identification of various important pathways that control biological systems. Investigators working in different fields of biological sciences have an intrinsic interest in this field and complement their findings by the application of different biophysical approaches and tools to quantify protein–ligand interactions that include protein–small molecules, protein–DNA, protein–RNA, protein–protein both in vitro and in vivo. In this paper, the various biophysical techniques that can be employed to study such interactions will be discussed. In addition to native gel electrophoresis and fluorescence-based methods, more details will be discussed, on the broad range of modern day biophysical tools such as Circular Dichroism, Fourier Transform Infrared (FTIR) Spectroscopy, Isothermal Titration Calorimetry, Analytical Ultracentrifugation, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy, Differential Scanning Fluorimetry, Nuclear Magnetic Resonance, Mass Spectroscopy, Single Molecule Spectroscopy, Dual Polarization Interferometry, Micro Scale Thermophoresis and Electro–switchable Biosensors that can be used to study the different aspects of protein–ligand interactions.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793048018300013","citationCount":"1","resultStr":"{\"title\":\"Modern Biophysical Approaches to Study Protein–Ligand Interactions\",\"authors\":\"P. Biswas\",\"doi\":\"10.1142/S1793048018300013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein–ligand interactions act as a pivot to the understanding of most of the biological interactions. The study of interactions between proteins and cellular molecules has led to the establishment and identification of various important pathways that control biological systems. Investigators working in different fields of biological sciences have an intrinsic interest in this field and complement their findings by the application of different biophysical approaches and tools to quantify protein–ligand interactions that include protein–small molecules, protein–DNA, protein–RNA, protein–protein both in vitro and in vivo. In this paper, the various biophysical techniques that can be employed to study such interactions will be discussed. In addition to native gel electrophoresis and fluorescence-based methods, more details will be discussed, on the broad range of modern day biophysical tools such as Circular Dichroism, Fourier Transform Infrared (FTIR) Spectroscopy, Isothermal Titration Calorimetry, Analytical Ultracentrifugation, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy, Differential Scanning Fluorimetry, Nuclear Magnetic Resonance, Mass Spectroscopy, Single Molecule Spectroscopy, Dual Polarization Interferometry, Micro Scale Thermophoresis and Electro–switchable Biosensors that can be used to study the different aspects of protein–ligand interactions.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793048018300013\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048018300013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048018300013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern Biophysical Approaches to Study Protein–Ligand Interactions
Protein–ligand interactions act as a pivot to the understanding of most of the biological interactions. The study of interactions between proteins and cellular molecules has led to the establishment and identification of various important pathways that control biological systems. Investigators working in different fields of biological sciences have an intrinsic interest in this field and complement their findings by the application of different biophysical approaches and tools to quantify protein–ligand interactions that include protein–small molecules, protein–DNA, protein–RNA, protein–protein both in vitro and in vivo. In this paper, the various biophysical techniques that can be employed to study such interactions will be discussed. In addition to native gel electrophoresis and fluorescence-based methods, more details will be discussed, on the broad range of modern day biophysical tools such as Circular Dichroism, Fourier Transform Infrared (FTIR) Spectroscopy, Isothermal Titration Calorimetry, Analytical Ultracentrifugation, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy, Differential Scanning Fluorimetry, Nuclear Magnetic Resonance, Mass Spectroscopy, Single Molecule Spectroscopy, Dual Polarization Interferometry, Micro Scale Thermophoresis and Electro–switchable Biosensors that can be used to study the different aspects of protein–ligand interactions.