基于变形石墨烯的等离子体生物传感器

V. Faramarzi, M. Heidari, Nik Humaidi bin Nik Zulkarnine, M. T. Hwang
{"title":"基于变形石墨烯的等离子体生物传感器","authors":"V. Faramarzi, M. Heidari, Nik Humaidi bin Nik Zulkarnine, M. T. Hwang","doi":"10.3390/biophysica2040045","DOIUrl":null,"url":null,"abstract":"Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Plasmonic Biosensors Based on Deformed Graphene\",\"authors\":\"V. Faramarzi, M. Heidari, Nik Humaidi bin Nik Zulkarnine, M. T. Hwang\",\"doi\":\"10.3390/biophysica2040045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica2040045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2040045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物分子和化学物质的快速、准确和无标签检测仍然是医疗保健领域的一项挑战。光学生物传感器被认为是许多领域所需的生物医学诊断工具,包括病毒检测、食品监测、环境污染物诊断、全球个性化医学和分子诊断。特别是,表面等离子体共振这一新兴且有前景的技术已经建立起来,当以高灵敏度、特异性和成本效益的方式在小占地面积平台的生物传感应用中使用时,可以提供实时和无标记的检测。在这项研究中,我们提出了一种基于双轴褶皱石墨烯结构的新型等离子体生物传感器,其中石墨烯中的等离子体共振用于检测样品介质折射率的变化。通过使用基于有限元方法和半经典Drude模型的理论计算研究不同衬底上皱缩石墨烯结构的光学响应,计算了周围分析物的RI发生给定变化时等离子体模式的共振波长的偏移。结果显示了4990nm/RIU的高灵敏度,对应于聚苯乙烯衬底上双轴皱缩石墨烯结构的20的大优值。我们证明,与单轴结构相比,双轴皱缩石墨烯表现出优异的传感性能。结果表明,氧化钛衬底上的石墨烯结构可以通过避免聚二甲基硅氧烷衬底的阻尼效应来提高传感器的灵敏度。双轴皱缩石墨烯增强的灵敏度和宽带机械可调谐性使其成为生物传感应用的一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmonic Biosensors Based on Deformed Graphene
Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Melanin in the Retinal Epithelium and Magnetic Sensing: A Review of Current Studies. Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential Differential Scanning Calorimetry of Proteins and the Two-State Model: Comparison of Two Formulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1