用从头算方法研究MCl2(H2O)n簇的光谱学

IF 0.2 Q4 CHEMISTRY, MULTIDISCIPLINARY Periodico Tche Quimica Pub Date : 2020-12-20 DOI:10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf
Ahmed M. Sadoon, O. S. Ahmad
{"title":"用从头算方法研究MCl2(H2O)n簇的光谱学","authors":"Ahmed M. Sadoon, O. S. Ahmad","doi":"10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf","DOIUrl":null,"url":null,"abstract":"\nThe Infrared (IR) spectroscopy of alkali earth halide salt (MX2) complexes with few numbers of water molecules have been investigated for the first time in this work. BeCl2 and MgCl2 are divalent salts and have been incorporated with water as a polar solvent to form complexes of type MX2(H2O)n. The effect of ion size plays a critical rule in the interactions between solvent and solute. Therefore, Beryllium and Magnesium salts with chloride were chosen to explore this difference. The importance of BeCl2 and MgCl2 comes from their several applications in the industry and pharmacy. For instance, BeCl2 is widely used in the industry as a catalysis of Friede-Craft reactions, while the main application of MgCl2 in pharmacy is as hemodialysis and peritoneal dialysis fluids. Three complexes of each BeCl2 and MgCl2 with water, MX2(H2O)n (n=1-3), were studied, and the chemical structures of these complexes have been performed using ab initio calculations. Ab initio calculations were used to predict possible structures, isomers, and their corresponding IR spectra using Second-order Møller-Plesset perturbation theory (MP2) with 6-311++G as a basis sets. The Geometry evaluations, energy searches, vibrational frequency calculations, and the binding energy of each complex were also extracted theoretically. The minimum energy of complexes structures was calculated, and different isomers have been recorded. Ionic hydrogen bonds (IHBs) between the OH in each water molecule and the chloride ion in the MCl2 was proposed to be the main prevalent contribution to the binding between the salt and water. The bond length between the alkaline metal and chlorine showed a significant increase with increasing the attached water molecule as a result of forming the IHB. Also, the infrared vibrational bands of the OH stretching region were recorded for the minimum structures, and dramatic redshift was performed. The formation of contact-ion pair structures in which each solvent molecule forms an ionic hydrogen bond (IHB) to the salt ion-pair (X-M+X-) has been confirmed by the predicted infrared spectra.\n","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPECTROSCOPY STUDY OF MCl2(H2O)n CLUSTER USING AB INITIO CALCULATIONS\",\"authors\":\"Ahmed M. Sadoon, O. S. Ahmad\",\"doi\":\"10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe Infrared (IR) spectroscopy of alkali earth halide salt (MX2) complexes with few numbers of water molecules have been investigated for the first time in this work. BeCl2 and MgCl2 are divalent salts and have been incorporated with water as a polar solvent to form complexes of type MX2(H2O)n. The effect of ion size plays a critical rule in the interactions between solvent and solute. Therefore, Beryllium and Magnesium salts with chloride were chosen to explore this difference. The importance of BeCl2 and MgCl2 comes from their several applications in the industry and pharmacy. For instance, BeCl2 is widely used in the industry as a catalysis of Friede-Craft reactions, while the main application of MgCl2 in pharmacy is as hemodialysis and peritoneal dialysis fluids. Three complexes of each BeCl2 and MgCl2 with water, MX2(H2O)n (n=1-3), were studied, and the chemical structures of these complexes have been performed using ab initio calculations. Ab initio calculations were used to predict possible structures, isomers, and their corresponding IR spectra using Second-order Møller-Plesset perturbation theory (MP2) with 6-311++G as a basis sets. The Geometry evaluations, energy searches, vibrational frequency calculations, and the binding energy of each complex were also extracted theoretically. The minimum energy of complexes structures was calculated, and different isomers have been recorded. Ionic hydrogen bonds (IHBs) between the OH in each water molecule and the chloride ion in the MCl2 was proposed to be the main prevalent contribution to the binding between the salt and water. The bond length between the alkaline metal and chlorine showed a significant increase with increasing the attached water molecule as a result of forming the IHB. Also, the infrared vibrational bands of the OH stretching region were recorded for the minimum structures, and dramatic redshift was performed. The formation of contact-ion pair structures in which each solvent molecule forms an ionic hydrogen bond (IHB) to the salt ion-pair (X-M+X-) has been confirmed by the predicted infrared spectra.\\n\",\"PeriodicalId\":45103,\"journal\":{\"name\":\"Periodico Tche Quimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Tche Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v17.n36.2020.599_periodico36_pgs_584_597.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文首次研究了含少量水分子的碱土卤化物配合物的红外光谱。BeCl2和MgCl2是二价盐,作为极性溶剂与水结合形成MX2(H2O)n型配合物。离子大小的影响在溶剂与溶质的相互作用中起着至关重要的作用。因此,选择含氯的铍盐和镁盐来探索这种差异。BeCl2和MgCl2的重要性来自于它们在工业和制药中的一些应用。例如,BeCl2作为Friede-Craft反应的催化剂在工业上被广泛使用,而MgCl2在药学上的主要应用是作为血液透析和腹膜透析液。本文研究了BeCl2和MgCl2与水的配合物MX2(H2O)n (n=1-3),并用从头算法计算了配合物的化学结构。以6-311++G为基集,采用二阶Møller-Plesset微扰理论(MP2)从头计算,预测了可能的结构、异构体及其相应的红外光谱。从理论上提取了每个配合物的几何评价、能量搜索、振动频率计算和结合能。计算了配合物结构的最小能量,并记录了不同的异构体。离子氢键(IHBs)在每个水分子中的OH和MCl2中的氯离子之间被认为是盐和水之间结合的主要普遍贡献。碱金属与氯之间的键长随着水分子的增加而显著增加。同时记录了最小结构的氢氧根拉伸区红外振动带,并发生了明显的红移。预测的红外光谱证实了溶剂分子与盐离子对(X- m +X-)形成离子氢键(IHB)的接触离子对结构的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPECTROSCOPY STUDY OF MCl2(H2O)n CLUSTER USING AB INITIO CALCULATIONS
The Infrared (IR) spectroscopy of alkali earth halide salt (MX2) complexes with few numbers of water molecules have been investigated for the first time in this work. BeCl2 and MgCl2 are divalent salts and have been incorporated with water as a polar solvent to form complexes of type MX2(H2O)n. The effect of ion size plays a critical rule in the interactions between solvent and solute. Therefore, Beryllium and Magnesium salts with chloride were chosen to explore this difference. The importance of BeCl2 and MgCl2 comes from their several applications in the industry and pharmacy. For instance, BeCl2 is widely used in the industry as a catalysis of Friede-Craft reactions, while the main application of MgCl2 in pharmacy is as hemodialysis and peritoneal dialysis fluids. Three complexes of each BeCl2 and MgCl2 with water, MX2(H2O)n (n=1-3), were studied, and the chemical structures of these complexes have been performed using ab initio calculations. Ab initio calculations were used to predict possible structures, isomers, and their corresponding IR spectra using Second-order Møller-Plesset perturbation theory (MP2) with 6-311++G as a basis sets. The Geometry evaluations, energy searches, vibrational frequency calculations, and the binding energy of each complex were also extracted theoretically. The minimum energy of complexes structures was calculated, and different isomers have been recorded. Ionic hydrogen bonds (IHBs) between the OH in each water molecule and the chloride ion in the MCl2 was proposed to be the main prevalent contribution to the binding between the salt and water. The bond length between the alkaline metal and chlorine showed a significant increase with increasing the attached water molecule as a result of forming the IHB. Also, the infrared vibrational bands of the OH stretching region were recorded for the minimum structures, and dramatic redshift was performed. The formation of contact-ion pair structures in which each solvent molecule forms an ionic hydrogen bond (IHB) to the salt ion-pair (X-M+X-) has been confirmed by the predicted infrared spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodico Tche Quimica
Periodico Tche Quimica CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
17
期刊介绍: The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.
期刊最新文献
INFLUENCE OF SYNTHESIS TIME IN THE PROPERTIES OF PtRu/CARBON HYBRIDS PREPARED BY HYDROTHERMAL CARBONIZATION METHOD IoT-BASED AGRICULTURE ENVIRONMENT AND SECURITY MONITORING SYSTEM STUDY ON EUTROPHICATION CHANGE AND THEIR CONSEQUENCES IN PALIASTOMI LAKE AUTOMATION OF CHLORINE DOSAGE ADJUSTMENT CALCULATION IN DEEP TUBULAR WATER WELLS USING A JAVASCRIPT AND HTML SCRIPT POSSIBILITIES OF ENERGY RECOVERY FOR THE IMPROVEMENT OF MUNICIPAL SOLID WASTE MANAGEMENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1