风电机电故障检测的卷积神经网络框架

IF 4 3区 工程技术 Q3 ENERGY & FUELS Wind Energy Pub Date : 2023-08-07 DOI:10.1002/we.2857
Emilie Stone, S. Giani, D. Zappalá, C. Crabtree
{"title":"风电机电故障检测的卷积神经网络框架","authors":"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree","doi":"10.1002/we.2857","DOIUrl":null,"url":null,"abstract":"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional neural network framework for wind turbine electromechanical fault detection\",\"authors\":\"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree\",\"doi\":\"10.1002/we.2857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.\",\"PeriodicalId\":23689,\"journal\":{\"name\":\"Wind Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2857\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

对风力涡轮机齿轮箱和发电机进行有效和及时的健康监测对于降低运营和维护活动的成本至关重要,特别是在海上。本文提出了一种基于高维原始状态监测数据的可扩展、轻量级卷积神经网络(CNN)框架,用于风力发电机组多机电故障的自动检测。所提出的方法利用了从各种信号中组合信息的潜力,以学习特征并区分故障类型及其严重程度。由于CNN层用于从信号中提取特征,因此该架构在时域内工作,可以实时消化高分辨率的多传感器数据流。为了克服人工智能模型固有的黑盒特性,本研究提出了两种可解释性技术,多维尺度和分层相关传播,以分析所提出模型的内部工作并识别与故障分类相关的信号特征。实验结果表明,该方法对所有故障案例的分类准确率均在99.9%以上,证明了该故障检测系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional neural network framework for wind turbine electromechanical fault detection
Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Energy
Wind Energy 工程技术-工程:机械
CiteScore
9.60
自引率
7.30%
发文量
0
审稿时长
6 months
期刊介绍: Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.
期刊最新文献
Optimal operating points for wind turbine control and co‐design Optimal design of a modular axial‐flux permanent‐magnet synchronous generator for gearless wind turbine applications Intracycle RPM control for vertical axis wind turbines Synthetic turbulence modelling for offshore wind farm engineering models using coherence aggregation Influence of soil plasticity models on offshore wind turbine response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1