T. J. Matthews, M. Loader, J. Wilkinson, Y. Buret, S. Large, Elliott A Birt
{"title":"锶侵入配合物:岩石学、热压测量法和钛矿对残余熔体化学的影响","authors":"T. J. Matthews, M. Loader, J. Wilkinson, Y. Buret, S. Large, Elliott A Birt","doi":"10.1093/petrology/egad059","DOIUrl":null,"url":null,"abstract":"\n Although the evolution of residual melts in magmatic systems controls their eruptability and ore-forming potential, their compositions are obscured in plutonic rocks by a protracted near-solidus evolution, and the absence of interstitial glass. Here, we trace the evolution of residual melt compositions in rocks from the Strontian Intrusive Complex, Scotland, using the trace element chemistry of amphiboles and titanites which are intergrown with amphibole rims. Laser ablation mapping reveals an abrupt change in certain trace elements in the amphibole rims, with sharp increases in Eu/Eu* and Sr/Y, and decreases in rare earth elements, Ta, Nb, and Ta/Nb ratios. Core-rim variations in these elements in titanite show the same variations as in amphibole, but are more gradual. By reconstructing the crystallisation sequence of the Strontian magmas using textural observations and thermobarometric estimates, we determine that amphibole cores crystallised prior to titanite saturation, but amphibole rims crystallised simultaneously with titanite. Using the trace element composition of the mineral phases and their modal abundance in the rock, with comparison to the whole-rock chemistry, we determine that titanite hosts the majority of the rare earth and high field strength element budget of the rocks. We therefore propose that the onset of titanite crystallisation had a profound effect on the trace element composition of late-stage residual melts at Strontian, which were inherited by the amphibole rims and subsequent titanites. This is supported by Rayleigh fractional crystallisation modelling which demonstrates that the composition of amphibole rims cannot be explained without the influence of titanite. We therefore show that the saturation of trace element rich phases in magmas represents a significant geochemical event in the petrogenesis of intermediate to silicic magmas. This has implications for provenance studies which attempt to reconstruct bulk rock compositions from mineral compositions, as the residual melts from which those minerals crystallise can be driven to significantly different compositions from the host magma by late-stage accessory phase crystallisation.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Strontian Intrusive Complex: Petrography, Thermobarometry and the Influence of Titanite on Residual Melt Chemistry\",\"authors\":\"T. J. Matthews, M. Loader, J. Wilkinson, Y. Buret, S. Large, Elliott A Birt\",\"doi\":\"10.1093/petrology/egad059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although the evolution of residual melts in magmatic systems controls their eruptability and ore-forming potential, their compositions are obscured in plutonic rocks by a protracted near-solidus evolution, and the absence of interstitial glass. Here, we trace the evolution of residual melt compositions in rocks from the Strontian Intrusive Complex, Scotland, using the trace element chemistry of amphiboles and titanites which are intergrown with amphibole rims. Laser ablation mapping reveals an abrupt change in certain trace elements in the amphibole rims, with sharp increases in Eu/Eu* and Sr/Y, and decreases in rare earth elements, Ta, Nb, and Ta/Nb ratios. Core-rim variations in these elements in titanite show the same variations as in amphibole, but are more gradual. By reconstructing the crystallisation sequence of the Strontian magmas using textural observations and thermobarometric estimates, we determine that amphibole cores crystallised prior to titanite saturation, but amphibole rims crystallised simultaneously with titanite. Using the trace element composition of the mineral phases and their modal abundance in the rock, with comparison to the whole-rock chemistry, we determine that titanite hosts the majority of the rare earth and high field strength element budget of the rocks. We therefore propose that the onset of titanite crystallisation had a profound effect on the trace element composition of late-stage residual melts at Strontian, which were inherited by the amphibole rims and subsequent titanites. This is supported by Rayleigh fractional crystallisation modelling which demonstrates that the composition of amphibole rims cannot be explained without the influence of titanite. We therefore show that the saturation of trace element rich phases in magmas represents a significant geochemical event in the petrogenesis of intermediate to silicic magmas. This has implications for provenance studies which attempt to reconstruct bulk rock compositions from mineral compositions, as the residual melts from which those minerals crystallise can be driven to significantly different compositions from the host magma by late-stage accessory phase crystallisation.\",\"PeriodicalId\":16751,\"journal\":{\"name\":\"Journal of Petrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/petrology/egad059\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egad059","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Strontian Intrusive Complex: Petrography, Thermobarometry and the Influence of Titanite on Residual Melt Chemistry
Although the evolution of residual melts in magmatic systems controls their eruptability and ore-forming potential, their compositions are obscured in plutonic rocks by a protracted near-solidus evolution, and the absence of interstitial glass. Here, we trace the evolution of residual melt compositions in rocks from the Strontian Intrusive Complex, Scotland, using the trace element chemistry of amphiboles and titanites which are intergrown with amphibole rims. Laser ablation mapping reveals an abrupt change in certain trace elements in the amphibole rims, with sharp increases in Eu/Eu* and Sr/Y, and decreases in rare earth elements, Ta, Nb, and Ta/Nb ratios. Core-rim variations in these elements in titanite show the same variations as in amphibole, but are more gradual. By reconstructing the crystallisation sequence of the Strontian magmas using textural observations and thermobarometric estimates, we determine that amphibole cores crystallised prior to titanite saturation, but amphibole rims crystallised simultaneously with titanite. Using the trace element composition of the mineral phases and their modal abundance in the rock, with comparison to the whole-rock chemistry, we determine that titanite hosts the majority of the rare earth and high field strength element budget of the rocks. We therefore propose that the onset of titanite crystallisation had a profound effect on the trace element composition of late-stage residual melts at Strontian, which were inherited by the amphibole rims and subsequent titanites. This is supported by Rayleigh fractional crystallisation modelling which demonstrates that the composition of amphibole rims cannot be explained without the influence of titanite. We therefore show that the saturation of trace element rich phases in magmas represents a significant geochemical event in the petrogenesis of intermediate to silicic magmas. This has implications for provenance studies which attempt to reconstruct bulk rock compositions from mineral compositions, as the residual melts from which those minerals crystallise can be driven to significantly different compositions from the host magma by late-stage accessory phase crystallisation.
期刊介绍:
The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.