用于微型移动的自动驾驶汽车

Henrik Christensen, David Paz, Hengyuan Zhang, Dominique Meyer, Hao Xiang, Yunhai Han, Yuhan Liu, Andrew Liang, Zheng Zhong, Shiqi Tang
{"title":"用于微型移动的自动驾驶汽车","authors":"Henrik Christensen,&nbsp;David Paz,&nbsp;Hengyuan Zhang,&nbsp;Dominique Meyer,&nbsp;Hao Xiang,&nbsp;Yunhai Han,&nbsp;Yuhan Liu,&nbsp;Andrew Liang,&nbsp;Zheng Zhong,&nbsp;Shiqi Tang","doi":"10.1007/s43684-021-00010-2","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous vehicles have been envisioned for more than 100 years. One of the first suggestions was a front cover of Scientific America back in 1916. Today, it is possible to get cars that drive autonomously for extended distances. We are also starting to see micro-mobility solutions, such as the Nuro vehicles for pizza delivery. Building autonomous cars that can operate in urban environments with a diverse set of road-users is far from trivial. Early 2018 the Contextual Robotics Institute at UC San Diego launched an effort to build a full stack autonomous vehicle for micro-mobility. The motivations were diverse: i) development of a system for operation in an environment with many pedestrians, ii) design of a system that does not rely on dense maps (or HD-maps as they are sometimes named), iii) design strategies to build truly robust systems, and iv) a framework to educate next-generation engineers. In this paper, we present the research effort of design, prototyping, and evaluation of such a vehicle. From the evaluation, several research directions are explored to account for shortcomings. Lessons and issues for future work are additionally drawn from this work.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00010-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Autonomous vehicles for micro-mobility\",\"authors\":\"Henrik Christensen,&nbsp;David Paz,&nbsp;Hengyuan Zhang,&nbsp;Dominique Meyer,&nbsp;Hao Xiang,&nbsp;Yunhai Han,&nbsp;Yuhan Liu,&nbsp;Andrew Liang,&nbsp;Zheng Zhong,&nbsp;Shiqi Tang\",\"doi\":\"10.1007/s43684-021-00010-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autonomous vehicles have been envisioned for more than 100 years. One of the first suggestions was a front cover of Scientific America back in 1916. Today, it is possible to get cars that drive autonomously for extended distances. We are also starting to see micro-mobility solutions, such as the Nuro vehicles for pizza delivery. Building autonomous cars that can operate in urban environments with a diverse set of road-users is far from trivial. Early 2018 the Contextual Robotics Institute at UC San Diego launched an effort to build a full stack autonomous vehicle for micro-mobility. The motivations were diverse: i) development of a system for operation in an environment with many pedestrians, ii) design of a system that does not rely on dense maps (or HD-maps as they are sometimes named), iii) design strategies to build truly robust systems, and iv) a framework to educate next-generation engineers. In this paper, we present the research effort of design, prototyping, and evaluation of such a vehicle. From the evaluation, several research directions are explored to account for shortcomings. Lessons and issues for future work are additionally drawn from this work.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00010-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00010-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00010-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对自动驾驶汽车的设想已有 100 多年的历史。早在 1916 年,《科学美国》的封面就刊登了最早的设想之一。如今,我们已经可以实现汽车的长距离自动驾驶。我们也开始看到微型移动解决方案,例如用于送披萨的 Nuro 汽车。打造能够在城市环境中与不同的道路使用者一起运行的自动驾驶汽车绝非易事。2018 年初,加州大学圣地亚哥分校的语境机器人研究所(Contextual Robotics Institute)发起了一项为微型交通打造全栈式自动驾驶汽车的努力。其动机多种多样:i) 开发在有许多行人的环境中运行的系统;ii) 设计一个不依赖密集地图(或有时被称为高清地图)的系统;iii) 设计构建真正稳健系统的策略;iv) 一个教育下一代工程师的框架。在本文中,我们介绍了对这种车辆的设计、原型制作和评估等研究工作。通过评估,我们探讨了几个研究方向,以弥补不足之处。此外,我们还从这项工作中汲取了经验教训,并提出了今后工作中应注意的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous vehicles for micro-mobility

Autonomous vehicles have been envisioned for more than 100 years. One of the first suggestions was a front cover of Scientific America back in 1916. Today, it is possible to get cars that drive autonomously for extended distances. We are also starting to see micro-mobility solutions, such as the Nuro vehicles for pizza delivery. Building autonomous cars that can operate in urban environments with a diverse set of road-users is far from trivial. Early 2018 the Contextual Robotics Institute at UC San Diego launched an effort to build a full stack autonomous vehicle for micro-mobility. The motivations were diverse: i) development of a system for operation in an environment with many pedestrians, ii) design of a system that does not rely on dense maps (or HD-maps as they are sometimes named), iii) design strategies to build truly robust systems, and iv) a framework to educate next-generation engineers. In this paper, we present the research effort of design, prototyping, and evaluation of such a vehicle. From the evaluation, several research directions are explored to account for shortcomings. Lessons and issues for future work are additionally drawn from this work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1