基于MSVPWM的DVR对配电网谐波的抑制和不平衡电压干扰的补偿

H. Husen
{"title":"基于MSVPWM的DVR对配电网谐波的抑制和不平衡电压干扰的补偿","authors":"H. Husen","doi":"10.24017/SCIENCE.2021.1.9","DOIUrl":null,"url":null,"abstract":"Recent power distribution networks comprise abundant sensitive loads, which extremely impact the power quality of source in electrical power networks. Voltage dip, voltage rise, imbalanced voltage, line notching and distortion of harmonics are problems of power quality frequently take place. Pre-disturbance voltage compensation strategy and phase-locked-loop (PLL) based dq- space vector control are presented to improve a Dynamic Voltage Restorer (DVR), which restore the magnitude of voltage disturbance and displacement of phase angle to prior of voltage disturbance. 3-phase Multilevel strategy of Space Vector Pulse Width Modulation (MSVPWM) based- Multilevel Diode Clamped Converter (MDCC) is proposed as switching pulse signals employed low frequency, which creates high levels of voltage and fewer harmonics in the output waveform in comparison to 2-level SVPWM based- DVR. 3-level SVPWM based- DVR under balanced and imbalanced distortion voltage disturbances included sags and swells injected appreciated quantities of voltage, thereby attained ideal sinusoidal waveform with lower Total Harmonic Distortion THD% compared to 2-level SVPWM based- DVR. Furthermore, real and imaginary powers balanced effectively at sensitive load during various distortion voltage disturbance conditions via presented work. The proposed simulation model of multi-level SVPWM based- DVR is implemented by dedicating the software system of MATLAB/SIMULINK. The results of simulation exhibit the effectiveness and efficiency of the presented work under different distortion voltage disturbance conditions.","PeriodicalId":17866,"journal":{"name":"Kurdistan Journal of Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Harmonics and Unbalanced Voltage Disturbance Compensation by MSVPWM Based- DVR in the Distribution Net\",\"authors\":\"H. Husen\",\"doi\":\"10.24017/SCIENCE.2021.1.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent power distribution networks comprise abundant sensitive loads, which extremely impact the power quality of source in electrical power networks. Voltage dip, voltage rise, imbalanced voltage, line notching and distortion of harmonics are problems of power quality frequently take place. Pre-disturbance voltage compensation strategy and phase-locked-loop (PLL) based dq- space vector control are presented to improve a Dynamic Voltage Restorer (DVR), which restore the magnitude of voltage disturbance and displacement of phase angle to prior of voltage disturbance. 3-phase Multilevel strategy of Space Vector Pulse Width Modulation (MSVPWM) based- Multilevel Diode Clamped Converter (MDCC) is proposed as switching pulse signals employed low frequency, which creates high levels of voltage and fewer harmonics in the output waveform in comparison to 2-level SVPWM based- DVR. 3-level SVPWM based- DVR under balanced and imbalanced distortion voltage disturbances included sags and swells injected appreciated quantities of voltage, thereby attained ideal sinusoidal waveform with lower Total Harmonic Distortion THD% compared to 2-level SVPWM based- DVR. Furthermore, real and imaginary powers balanced effectively at sensitive load during various distortion voltage disturbance conditions via presented work. The proposed simulation model of multi-level SVPWM based- DVR is implemented by dedicating the software system of MATLAB/SIMULINK. The results of simulation exhibit the effectiveness and efficiency of the presented work under different distortion voltage disturbance conditions.\",\"PeriodicalId\":17866,\"journal\":{\"name\":\"Kurdistan Journal of Applied Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kurdistan Journal of Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24017/SCIENCE.2021.1.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kurdistan Journal of Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24017/SCIENCE.2021.1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代配电网中含有大量的敏感负荷,对电网中电源的电能质量产生极大的影响。电压陡降、电压上升、电压不平衡、线路陷波和谐波失真是经常发生的电能质量问题。为了改进动态电压恢复器(DVR),提出了干扰前电压补偿策略和基于锁相环(PLL)的dq空间矢量控制,将电压扰动的大小和相角位移恢复到电压扰动的先验值。提出了基于空间矢量脉宽调制(MSVPWM)的多电平二极管箝位变换器(MDCC)的3相多电平策略,该策略采用低频开关脉冲信号,与基于2电平SVPWM的DVR相比,输出波形产生高电平且谐波较少。与基于2级SVPWM的- DVR相比,基于3级SVPWM的- DVR在平衡畸变和不平衡畸变下的电压扰动包括电压的下降和膨胀,从而获得了较低总谐波失真THD%的理想正弦波形。此外,通过本文的工作,在各种失真电压干扰条件下,在敏感负载上实现了实虚功率的有效平衡。利用MATLAB/SIMULINK软件系统实现了基于多级SVPWM的DVR仿真模型。仿真结果表明了该方法在不同畸变电压扰动条件下的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation of Harmonics and Unbalanced Voltage Disturbance Compensation by MSVPWM Based- DVR in the Distribution Net
Recent power distribution networks comprise abundant sensitive loads, which extremely impact the power quality of source in electrical power networks. Voltage dip, voltage rise, imbalanced voltage, line notching and distortion of harmonics are problems of power quality frequently take place. Pre-disturbance voltage compensation strategy and phase-locked-loop (PLL) based dq- space vector control are presented to improve a Dynamic Voltage Restorer (DVR), which restore the magnitude of voltage disturbance and displacement of phase angle to prior of voltage disturbance. 3-phase Multilevel strategy of Space Vector Pulse Width Modulation (MSVPWM) based- Multilevel Diode Clamped Converter (MDCC) is proposed as switching pulse signals employed low frequency, which creates high levels of voltage and fewer harmonics in the output waveform in comparison to 2-level SVPWM based- DVR. 3-level SVPWM based- DVR under balanced and imbalanced distortion voltage disturbances included sags and swells injected appreciated quantities of voltage, thereby attained ideal sinusoidal waveform with lower Total Harmonic Distortion THD% compared to 2-level SVPWM based- DVR. Furthermore, real and imaginary powers balanced effectively at sensitive load during various distortion voltage disturbance conditions via presented work. The proposed simulation model of multi-level SVPWM based- DVR is implemented by dedicating the software system of MATLAB/SIMULINK. The results of simulation exhibit the effectiveness and efficiency of the presented work under different distortion voltage disturbance conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
12 weeks
期刊最新文献
A Wavelet Shrinkage Mixed with a Single-level 2D Discrete Wavelet Transform for Image Denoising Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province. Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite Multi-Label Feature Selection with Graph-based Ant Colony Optimization and Generalized Jaccard Similarity Evaluate the Implementation of WHO Infection Prevention and Control Core Components Among Health Care Facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1