利用机器学习算法检测太阳能供暖系统中的异常

M. Kunelbayev, Abdildayeva Assel, Taganova Guldana
{"title":"利用机器学习算法检测太阳能供暖系统中的异常","authors":"M. Kunelbayev, Abdildayeva Assel, Taganova Guldana","doi":"10.46300/9104.2021.15.32","DOIUrl":null,"url":null,"abstract":"This article explores the use of machine learning algorithms to identify anomalies in the solar heating system. A solar heating system that has been developed consists of several parts to simplify the description and modeling process. The authors propose a new architecture for neural networks based on ordinary differential equations. The idea is to apply the new architecture for practical problems of accident prediction (the problem of extrapolation of time series) and classification (classification of accidents based on historical data). The developed machine learning algorithms, artificial intelligence techniques, the theory of differential equations - these directions allow us to build a model for predicting the system's accident rate. The theory of database management (non-relational databases) - these systems allow you to establish the optimal storage of large time series.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning Algorithms to Detect Anomalies in the Solar Heating System\",\"authors\":\"M. Kunelbayev, Abdildayeva Assel, Taganova Guldana\",\"doi\":\"10.46300/9104.2021.15.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the use of machine learning algorithms to identify anomalies in the solar heating system. A solar heating system that has been developed consists of several parts to simplify the description and modeling process. The authors propose a new architecture for neural networks based on ordinary differential equations. The idea is to apply the new architecture for practical problems of accident prediction (the problem of extrapolation of time series) and classification (classification of accidents based on historical data). The developed machine learning algorithms, artificial intelligence techniques, the theory of differential equations - these directions allow us to build a model for predicting the system's accident rate. The theory of database management (non-relational databases) - these systems allow you to establish the optimal storage of large time series.\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2021.15.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2021.15.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了使用机器学习算法来识别太阳能供暖系统中的异常情况。为了简化描述和建模过程,已经开发的太阳能供暖系统由几个部分组成。作者提出了一种新的基于常微分方程的神经网络结构。其想法是将新架构应用于事故预测(时间序列的外推问题)和分类(基于历史数据的事故分类)的实际问题。所开发的机器学习算法、人工智能技术、微分方程理论——这些方向使我们能够建立一个预测系统事故率的模型。数据库管理理论(非关系数据库)-这些系统允许您建立大型时间序列的最佳存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Machine Learning Algorithms to Detect Anomalies in the Solar Heating System
This article explores the use of machine learning algorithms to identify anomalies in the solar heating system. A solar heating system that has been developed consists of several parts to simplify the description and modeling process. The authors propose a new architecture for neural networks based on ordinary differential equations. The idea is to apply the new architecture for practical problems of accident prediction (the problem of extrapolation of time series) and classification (classification of accidents based on historical data). The developed machine learning algorithms, artificial intelligence techniques, the theory of differential equations - these directions allow us to build a model for predicting the system's accident rate. The theory of database management (non-relational databases) - these systems allow you to establish the optimal storage of large time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics
International Journal of Mechanics Engineering-Computational Mechanics
CiteScore
1.60
自引率
0.00%
发文量
17
期刊最新文献
Optimal Control of the Dynamics of Physical and Chemical Processes of Blending and Melting of Copper Concentrates Application of SAW Technique for Finding the Best Dressing Mode for Surface Grinding Hardox 500 Model for Calculating Stress Intensity Factors for an Inclined Crack at the Leading Edge of a Gas Turbine Engine Blade Under the Influence of Centrifugal Forces Demodulation and Vibration Signal Systems for Photonic Fiber Optic Pressure Sensor Demodulation and Vibration Signal Systems for Photonic Fiber Optic Pressure Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1