{"title":"阿拉伯语和日语复音词的中元音时间声学","authors":"Yahya Aldholmi","doi":"10.24425/aoa.2022.142006","DOIUrl":null,"url":null,"abstract":"The current study is dedicated to measuring vowel temporal acoustics (duration, durational difference, and durational ratio) in the medial position of mostly CVCVCV polysyllabic words in Arabic and Japanese, avoiding the asymmetries in vowel position, syllable structure, and coda consonant quantity (singleton versus geminate) observed in previous experiments. Twenty-nine (16 Arabic and 13 Japanese) participants were asked to use a carrier sentence to produce 60 polysyllabic (mainly CVCVCV) items that contrasted in vowel quantity (short versus long) and vowel quality (/a/, /i/, and /u/) at a normal speech rate. The results show that while short and long vowels are durationally distinct within a language, Japanese vowels are clearly longer than Arabic vowels, although the durational difference remains approximately the same between the two languages. The durational ratio of short-to-long vowel presents a new pattern that contrasts with that reported in earlier research. Specifically, Japanese long vowels in the medial position of polysyllabic words are twice as long as their short counterparts, while Arabic long vowels are more than twice as long. This shows that both vowel position and syllable structure must be considered when measuring vowel temporal acoustics or when structuring stimuli for perception experiments.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medial Vowel Temporal Acoustics in Arabic and Japanese Polysyllabic Words\",\"authors\":\"Yahya Aldholmi\",\"doi\":\"10.24425/aoa.2022.142006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study is dedicated to measuring vowel temporal acoustics (duration, durational difference, and durational ratio) in the medial position of mostly CVCVCV polysyllabic words in Arabic and Japanese, avoiding the asymmetries in vowel position, syllable structure, and coda consonant quantity (singleton versus geminate) observed in previous experiments. Twenty-nine (16 Arabic and 13 Japanese) participants were asked to use a carrier sentence to produce 60 polysyllabic (mainly CVCVCV) items that contrasted in vowel quantity (short versus long) and vowel quality (/a/, /i/, and /u/) at a normal speech rate. The results show that while short and long vowels are durationally distinct within a language, Japanese vowels are clearly longer than Arabic vowels, although the durational difference remains approximately the same between the two languages. The durational ratio of short-to-long vowel presents a new pattern that contrasts with that reported in earlier research. Specifically, Japanese long vowels in the medial position of polysyllabic words are twice as long as their short counterparts, while Arabic long vowels are more than twice as long. This shows that both vowel position and syllable structure must be considered when measuring vowel temporal acoustics or when structuring stimuli for perception experiments.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2022.142006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Medial Vowel Temporal Acoustics in Arabic and Japanese Polysyllabic Words
The current study is dedicated to measuring vowel temporal acoustics (duration, durational difference, and durational ratio) in the medial position of mostly CVCVCV polysyllabic words in Arabic and Japanese, avoiding the asymmetries in vowel position, syllable structure, and coda consonant quantity (singleton versus geminate) observed in previous experiments. Twenty-nine (16 Arabic and 13 Japanese) participants were asked to use a carrier sentence to produce 60 polysyllabic (mainly CVCVCV) items that contrasted in vowel quantity (short versus long) and vowel quality (/a/, /i/, and /u/) at a normal speech rate. The results show that while short and long vowels are durationally distinct within a language, Japanese vowels are clearly longer than Arabic vowels, although the durational difference remains approximately the same between the two languages. The durational ratio of short-to-long vowel presents a new pattern that contrasts with that reported in earlier research. Specifically, Japanese long vowels in the medial position of polysyllabic words are twice as long as their short counterparts, while Arabic long vowels are more than twice as long. This shows that both vowel position and syllable structure must be considered when measuring vowel temporal acoustics or when structuring stimuli for perception experiments.
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.