硅纳米线技术:简评、国产解决方案及未来趋势

L. Stucchi-Zucchi, Marcos Vinicius Puydinger dos Santos, Fernando César Rufino, José Alexandre Diniz
{"title":"硅纳米线技术:简评、国产解决方案及未来趋势","authors":"L. Stucchi-Zucchi, Marcos Vinicius Puydinger dos Santos, Fernando César Rufino, José Alexandre Diniz","doi":"10.29292/jics.v17i2.614","DOIUrl":null,"url":null,"abstract":"The silicon nanowire (SiNW) is poised to become an industry standard on the upcoming technological nodes. It presents improved current drive and modulation, minimized footprint, stackability, and a host of different beneficial characteristics. The last few years of research have focused on solving the last remaining challenges of SiNW fabrication as they roll into commercial usage. Now, novel devices, as well as channel and device stacking for 3D VLSI applications is being studied. As well as how can the SiNW geometry can be harnessed for More Than Moore materials and applications. In this review, we present a sample of the range of devices, techniques and applications of SiNW structures, alongside novel developments in the research carried out at University of Campinas. Demonstrations of JLFETs fabricated using Ga+-FIB, e-beam lithography, silicon etching in NH4OH solution, FinFETs fabricated using Ga+ lithography and strained silicon structures are shown. Promising future developments in VLSI and More Than Moore applications such as vertically stacked nanowire geometries, graphene nanoribbon devices, and MagFETs are also presented.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon Nanowire Technologies: brief review, home-made solutions and future trends\",\"authors\":\"L. Stucchi-Zucchi, Marcos Vinicius Puydinger dos Santos, Fernando César Rufino, José Alexandre Diniz\",\"doi\":\"10.29292/jics.v17i2.614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The silicon nanowire (SiNW) is poised to become an industry standard on the upcoming technological nodes. It presents improved current drive and modulation, minimized footprint, stackability, and a host of different beneficial characteristics. The last few years of research have focused on solving the last remaining challenges of SiNW fabrication as they roll into commercial usage. Now, novel devices, as well as channel and device stacking for 3D VLSI applications is being studied. As well as how can the SiNW geometry can be harnessed for More Than Moore materials and applications. In this review, we present a sample of the range of devices, techniques and applications of SiNW structures, alongside novel developments in the research carried out at University of Campinas. Demonstrations of JLFETs fabricated using Ga+-FIB, e-beam lithography, silicon etching in NH4OH solution, FinFETs fabricated using Ga+ lithography and strained silicon structures are shown. Promising future developments in VLSI and More Than Moore applications such as vertically stacked nanowire geometries, graphene nanoribbon devices, and MagFETs are also presented.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i2.614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i2.614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

硅纳米线(SiNW)有望成为即将到来的技术节点的行业标准。它具有改进的电流驱动和调制,最小的占地面积,可堆叠性和许多不同的有益特性。过去几年的研究集中在解决SiNW制造的最后遗留挑战,因为它们进入商业用途。目前,3D VLSI应用的新型器件以及通道和器件堆叠正在研究中。以及如何将SiNW几何结构用于More Than Moore材料和应用。在这篇综述中,我们展示了SiNW结构的一系列设备、技术和应用的样本,以及在坎皮纳斯大学进行的研究中的新进展。展示了采用Ga+-FIB、电子束光刻、NH4OH溶液中硅蚀刻、Ga+光刻和应变硅结构制备的finfet。展望VLSI和More Than Moore应用的未来发展,如垂直堆叠纳米线几何形状,石墨烯纳米带器件和磁体效应管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silicon Nanowire Technologies: brief review, home-made solutions and future trends
The silicon nanowire (SiNW) is poised to become an industry standard on the upcoming technological nodes. It presents improved current drive and modulation, minimized footprint, stackability, and a host of different beneficial characteristics. The last few years of research have focused on solving the last remaining challenges of SiNW fabrication as they roll into commercial usage. Now, novel devices, as well as channel and device stacking for 3D VLSI applications is being studied. As well as how can the SiNW geometry can be harnessed for More Than Moore materials and applications. In this review, we present a sample of the range of devices, techniques and applications of SiNW structures, alongside novel developments in the research carried out at University of Campinas. Demonstrations of JLFETs fabricated using Ga+-FIB, e-beam lithography, silicon etching in NH4OH solution, FinFETs fabricated using Ga+ lithography and strained silicon structures are shown. Promising future developments in VLSI and More Than Moore applications such as vertically stacked nanowire geometries, graphene nanoribbon devices, and MagFETs are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1