Luigi Romano, F. Timpone, F. Bruzelius, B. Jacobson
{"title":"基于刷理论的瞬态轮胎打滑损失","authors":"Luigi Romano, F. Timpone, F. Bruzelius, B. Jacobson","doi":"10.2346/tire.22.20002","DOIUrl":null,"url":null,"abstract":"\n Tire slip losses have been shown to have a significant impact on vehicle performance in terms of energy efficiency, thus requiring accurate studies. In this paper, the transient dissipation mechanisms connected to the presence of micro-sliding phenomena occurring at the tire–road interface are investigated analytically. The influence of a two-dimensional velocity field inside the contact patch is also considered in light of the new brush theory recently developed by the authors. Theoretical results align with findings already known from literature but suggest that the camber and turn spins contribute differently to the slip losses and should be regarded as separate entities when the camber angle is sufficiently large. The present work shows that an additional amount of power which relates to the initial sliding conditions is generated or lost during the unsteady-state maneuvers. A simple example is presented to illustrate the discrepancy between the microscopic and macroscopic approaches during a transient maneuver.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Tire Slip Losses Using the Brush Theory\",\"authors\":\"Luigi Romano, F. Timpone, F. Bruzelius, B. Jacobson\",\"doi\":\"10.2346/tire.22.20002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tire slip losses have been shown to have a significant impact on vehicle performance in terms of energy efficiency, thus requiring accurate studies. In this paper, the transient dissipation mechanisms connected to the presence of micro-sliding phenomena occurring at the tire–road interface are investigated analytically. The influence of a two-dimensional velocity field inside the contact patch is also considered in light of the new brush theory recently developed by the authors. Theoretical results align with findings already known from literature but suggest that the camber and turn spins contribute differently to the slip losses and should be regarded as separate entities when the camber angle is sufficiently large. The present work shows that an additional amount of power which relates to the initial sliding conditions is generated or lost during the unsteady-state maneuvers. A simple example is presented to illustrate the discrepancy between the microscopic and macroscopic approaches during a transient maneuver.\",\"PeriodicalId\":44601,\"journal\":{\"name\":\"Tire Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tire Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2346/tire.22.20002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.22.20002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tire slip losses have been shown to have a significant impact on vehicle performance in terms of energy efficiency, thus requiring accurate studies. In this paper, the transient dissipation mechanisms connected to the presence of micro-sliding phenomena occurring at the tire–road interface are investigated analytically. The influence of a two-dimensional velocity field inside the contact patch is also considered in light of the new brush theory recently developed by the authors. Theoretical results align with findings already known from literature but suggest that the camber and turn spins contribute differently to the slip losses and should be regarded as separate entities when the camber angle is sufficiently large. The present work shows that an additional amount of power which relates to the initial sliding conditions is generated or lost during the unsteady-state maneuvers. A simple example is presented to illustrate the discrepancy between the microscopic and macroscopic approaches during a transient maneuver.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.