基于条件指定先验的变点问题的贝叶斯分析

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-08-08 DOI:10.1007/s40745-023-00484-2
G. Shahtahmassebi, José María Sarabia
{"title":"基于条件指定先验的变点问题的贝叶斯分析","authors":"G. Shahtahmassebi,&nbsp;José María Sarabia","doi":"10.1007/s40745-023-00484-2","DOIUrl":null,"url":null,"abstract":"<div><p>In data analysis, change point problems correspond to abrupt changes in stochastic mechanisms generating data. The detection of change points is a relevant problem in the analysis and prediction of time series. In this paper, we consider a class of conjugate prior distributions obtained from conditional specification methodology for solving this problem. We illustrate the application of such distributions in Bayesian change point detection analysis with Poisson processes. We obtain the posterior distribution of model parameters using general bivariate distribution with gamma conditionals. Simulation from the posterior are readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-023-00484-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors\",\"authors\":\"G. Shahtahmassebi,&nbsp;José María Sarabia\",\"doi\":\"10.1007/s40745-023-00484-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In data analysis, change point problems correspond to abrupt changes in stochastic mechanisms generating data. The detection of change points is a relevant problem in the analysis and prediction of time series. In this paper, we consider a class of conjugate prior distributions obtained from conditional specification methodology for solving this problem. We illustrate the application of such distributions in Bayesian change point detection analysis with Poisson processes. We obtain the posterior distribution of model parameters using general bivariate distribution with gamma conditionals. Simulation from the posterior are readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40745-023-00484-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00484-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00484-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在数据分析中,变化点问题与产生数据的随机机制的突然变化相对应。变化点的检测是时间序列分析和预测中的一个相关问题。在本文中,我们考虑从条件规范方法中获得的一类共轭先验分布来解决这一问题。我们举例说明了这类分布在泊松过程的贝叶斯变化点检测分析中的应用。我们使用具有伽马条件的一般双变量分布来获得模型参数的后验分布。使用吉布斯采样算法可以很容易地从后验分布进行模拟。即使使用不相容或仅与不适当的联合密度相容的条件密度,也能实现吉布斯采样。我们将通过模拟数据和真实数据的例子来演示这些方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors

In data analysis, change point problems correspond to abrupt changes in stochastic mechanisms generating data. The detection of change points is a relevant problem in the analysis and prediction of time series. In this paper, we consider a class of conjugate prior distributions obtained from conditional specification methodology for solving this problem. We illustrate the application of such distributions in Bayesian change point detection analysis with Poisson processes. We obtain the posterior distribution of model parameters using general bivariate distribution with gamma conditionals. Simulation from the posterior are readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1