人的摇摆或摆动引起的地面反作用力及其对荷载结构的动力效应研究

V. Šána, T. Plachý, M. Polak, Magdaléna Boháčová
{"title":"人的摇摆或摆动引起的地面反作用力及其对荷载结构的动力效应研究","authors":"V. Šána, T. Plachý, M. Polak, Magdaléna Boháčová","doi":"10.37394/232011.2023.18.12","DOIUrl":null,"url":null,"abstract":"The core of the submitted article is in the modeling of bobbing people for describing the action of qualified vandals, who try to achieve an excessive level of vibration by their periodic sway in the knees while they are not losing contact between the footbridge deck and their feet. The DLF models, which already exist, provide particular coefficients only for specific pacing frequencies. On the other hand, our study presents DLF coefficients as a continuous function for frequencies in the range of 1 Hz – 3 Hz. The newly presented DLF model is based on the measurement of 15 random people and compared with the experimental data. Each of these people was measured by a force plate in the frequency range of 1 Hz – 3 Hz. Since we know who exactly was present during the experiment, we also monitored the contact forces produced by these people at frequencies identical to some natural frequencies of the footbridge according to the experimental setup. These measured forces were used directly as the input into the calculation process and compared with the experiment too. Subsequent dynamic calculations of the forced vibration were carried out by Modal Decomposition Method. This method requires a mode shape as one of the inputs, these mode shapes were calculated by the Subspace Iteration Method using commercial software Dlubal RFEM 5.03. Numerical integration of the equations of motion (forced vibration analysis) was done by self-written MATLAB codes and routines. At the end of the article, we summarize the results of theoretical dynamic analysis obtained by theoretical modeling of these vandals. The main outcomes are in the determination of the continuous functions for DLFs and their phase angles based on the experimental results. These values are crucial e.g. for designers, who need to compute the response of a footbridge or a grandstand which could be excited by swaying or bobbing vandals or spectators. Obtained and evaluated continuous functions for DLFs were compared by literature where researchers presented some DLFs for discrete sets of frequencies, which produced a good level of accordance.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Ground Reaction Force Induced by Swaying or Bobbing People and its Dynamic Effect on Loaded Structures\",\"authors\":\"V. Šána, T. Plachý, M. Polak, Magdaléna Boháčová\",\"doi\":\"10.37394/232011.2023.18.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The core of the submitted article is in the modeling of bobbing people for describing the action of qualified vandals, who try to achieve an excessive level of vibration by their periodic sway in the knees while they are not losing contact between the footbridge deck and their feet. The DLF models, which already exist, provide particular coefficients only for specific pacing frequencies. On the other hand, our study presents DLF coefficients as a continuous function for frequencies in the range of 1 Hz – 3 Hz. The newly presented DLF model is based on the measurement of 15 random people and compared with the experimental data. Each of these people was measured by a force plate in the frequency range of 1 Hz – 3 Hz. Since we know who exactly was present during the experiment, we also monitored the contact forces produced by these people at frequencies identical to some natural frequencies of the footbridge according to the experimental setup. These measured forces were used directly as the input into the calculation process and compared with the experiment too. Subsequent dynamic calculations of the forced vibration were carried out by Modal Decomposition Method. This method requires a mode shape as one of the inputs, these mode shapes were calculated by the Subspace Iteration Method using commercial software Dlubal RFEM 5.03. Numerical integration of the equations of motion (forced vibration analysis) was done by self-written MATLAB codes and routines. At the end of the article, we summarize the results of theoretical dynamic analysis obtained by theoretical modeling of these vandals. The main outcomes are in the determination of the continuous functions for DLFs and their phase angles based on the experimental results. These values are crucial e.g. for designers, who need to compute the response of a footbridge or a grandstand which could be excited by swaying or bobbing vandals or spectators. Obtained and evaluated continuous functions for DLFs were compared by literature where researchers presented some DLFs for discrete sets of frequencies, which produced a good level of accordance.\",\"PeriodicalId\":53603,\"journal\":{\"name\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232011.2023.18.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2023.18.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提交的文章的核心是对摆动的人进行建模,以描述合格的破坏者的行为,他们试图通过膝盖的周期性摆动来达到过度的振动水平,同时他们的脚与人行桥甲板之间没有失去接触。已经存在的DLF模型仅为特定的起搏频率提供特定的系数。另一方面,我们的研究将DLF系数呈现为1 Hz - 3 Hz范围内频率的连续函数。新提出的DLF模型基于随机15人的测量,并与实验数据进行了比较。每个人都用测力板在1赫兹到3赫兹的频率范围内进行测量。由于我们知道在实验过程中谁在场,我们也监测了这些人产生的接触力,根据实验设置,这些接触力的频率与人行桥的一些固有频率相同。这些测得的力直接作为计算过程的输入,并与实验进行了比较。随后采用模态分解法进行了受迫振动的动力学计算。该方法需要一个模态振型作为输入之一,这些模态振型通过子空间迭代法计算,使用商业软件lulbal RFEM 5.03。运动方程的数值积分(强迫振动分析)由自己编写的MATLAB代码和例程完成。在文章的最后,我们总结了对这些破坏者进行理论建模所获得的理论动力学分析结果。主要成果是基于实验结果确定了dlf的连续函数及其相位角。这些值对于设计师来说是至关重要的,他们需要计算行人桥或看台的反应,这些反应可能会被摇摆或摇摆的破坏者或观众所激发。本文比较了离散频率集的dlf的连续函数,得到的结果与估计的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Ground Reaction Force Induced by Swaying or Bobbing People and its Dynamic Effect on Loaded Structures
The core of the submitted article is in the modeling of bobbing people for describing the action of qualified vandals, who try to achieve an excessive level of vibration by their periodic sway in the knees while they are not losing contact between the footbridge deck and their feet. The DLF models, which already exist, provide particular coefficients only for specific pacing frequencies. On the other hand, our study presents DLF coefficients as a continuous function for frequencies in the range of 1 Hz – 3 Hz. The newly presented DLF model is based on the measurement of 15 random people and compared with the experimental data. Each of these people was measured by a force plate in the frequency range of 1 Hz – 3 Hz. Since we know who exactly was present during the experiment, we also monitored the contact forces produced by these people at frequencies identical to some natural frequencies of the footbridge according to the experimental setup. These measured forces were used directly as the input into the calculation process and compared with the experiment too. Subsequent dynamic calculations of the forced vibration were carried out by Modal Decomposition Method. This method requires a mode shape as one of the inputs, these mode shapes were calculated by the Subspace Iteration Method using commercial software Dlubal RFEM 5.03. Numerical integration of the equations of motion (forced vibration analysis) was done by self-written MATLAB codes and routines. At the end of the article, we summarize the results of theoretical dynamic analysis obtained by theoretical modeling of these vandals. The main outcomes are in the determination of the continuous functions for DLFs and their phase angles based on the experimental results. These values are crucial e.g. for designers, who need to compute the response of a footbridge or a grandstand which could be excited by swaying or bobbing vandals or spectators. Obtained and evaluated continuous functions for DLFs were compared by literature where researchers presented some DLFs for discrete sets of frequencies, which produced a good level of accordance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Reduction of Input Torque and Joint Reactions in High-Speed Mechanical Systems with Reciprocating Motion Modeling the Normal Contact Characteristics between Components Joined in Multi-Bolted Systems Structural Investigation of Drini River Bridges, Case Study of Structures Analyses Stability of Beam Bridges Under Bridge-Vehicle Interaction Effect of Earthquake-Induced Structural Pounding on the Floor Accelerations and Floor Response Spectra of Adjacent Building Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1