美国加利福尼亚州莫诺湖上一次冰川消融期间,陆地生态系统为应对快速气候变化而发生的变化

IF 1.7 3区 地球科学 Q3 GEOGRAPHY, PHYSICAL Quaternary Research Pub Date : 2023-03-01 DOI:10.1017/qua.2022.70
Adam J. Benfield, S. Ivory, B. Hodelka, S. Zimmerman, M. McGlue
{"title":"美国加利福尼亚州莫诺湖上一次冰川消融期间,陆地生态系统为应对快速气候变化而发生的变化","authors":"Adam J. Benfield, S. Ivory, B. Hodelka, S. Zimmerman, M. McGlue","doi":"10.1017/qua.2022.70","DOIUrl":null,"url":null,"abstract":"Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence of Sequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"113 1","pages":"87 - 104"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrestrial ecosystem transformations in response to rapid climate change during the last deglaciation around Mono Lake, California, USA\",\"authors\":\"Adam J. Benfield, S. Ivory, B. Hodelka, S. Zimmerman, M. McGlue\",\"doi\":\"10.1017/qua.2022.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence of Sequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.\",\"PeriodicalId\":49643,\"journal\":{\"name\":\"Quaternary Research\",\"volume\":\"113 1\",\"pages\":\"87 - 104\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/qua.2022.70\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/qua.2022.70","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文利用深海沉积物岩心的花粉、微炭和亲真菌孢子(Sporormiella)研究了16000 - 9000 calyr BP末次冰期加利福尼亚Mono湖周围陆地生态系统的主要重组。花粉研究结果记录了Mono湖周围高山和大盆地混合群落的组成、衰落和被碱池和山艾草草原生物群落取代的过程。特别是全新世早期红杉型花粉的神秘存在及其消失,暗示了冰川消退期间,喜马拉雅—大盆地过渡带发生了大规模的生物地理重组。在14,800 cal yr BP、13,900 cal yr BP和12,800 cal yr BP,快速的区域水文气候变化导致了松柏林地的结构变化。冠层的快速变化改变了草本林下植物的可用性,可能对巨型动物种群造成压力,在15,000 cal - yr BP和12,700 cal - yr BP时,巨型动物种群逐渐减少,最终在11,500 cal - yr BP时从Mono盆地灭绝。然而,在晚更新世期间,树木植被群落总体上对水文气候突变保持抗性;在全新世早期,随着气温的升高,它们逐渐减少,被低地的碱汇群落所取代,Mono湖逐渐退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terrestrial ecosystem transformations in response to rapid climate change during the last deglaciation around Mono Lake, California, USA
Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence of Sequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quaternary Research
Quaternary Research 地学-地球科学综合
CiteScore
4.70
自引率
8.70%
发文量
57
审稿时长
3 months
期刊介绍: Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.
期刊最新文献
Sedimentation rate changes across the Chinese Loess Plateau from luminescence dating of Malan loess in the Sanmen Gorge Large herbivore δ18O as a proxy for aridity in the South African winter and year-round rainfall zone Understanding the fluvial capture of the Guadix-Baza Basin in SE Spain through its oldest exorheic deposits Sedimentologic successions and chronology of the late Pleistocene deposits on the southern Kola Peninsula, northern Europe New insights into the glacial and relative sea-level history of the western Fraser Lowland based on sediment cores from geotechnical drilling for the Evergreen Tunnel, British Columbia, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1