{"title":"基于近红外分析的黑核桃干密度预测","authors":"Zi-Rui Ren, Li Luo, Bin Na","doi":"10.1515/hf-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract The combination of computer technology and non-destructive testing technology can facilitate the development of forestry in a more intelligent direction. In this paper, a Shapley additive explanations (SHAP)-based method is used to analyse the importance of band features in the near-infrared spectrum of black walnut wood, which ranges from 900 to 1650 nm. The spectral data from the SHAP analysis are fed into an integrated framework of machine learning algorithms based on four different theories. In the comparison tests, three different pre-processed NIR spectral data are entered into the integrated framework. The result of the SHAP analysis shows that the wavelengths that are positively correlated with the air-dry density of black walnut are 1354.59, 1400.23, 1341.51, 1426.26, 1413.25 nm. The model predictions show that the SHAP-treated spectral data outperformed the other two treatments for each model. For the SHAP-treated spectral data, the KNN model gives the best results with an R2 of 0.947 and an MSE of 0.0010.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the air-dry density of black walnut based on NIR analysis\",\"authors\":\"Zi-Rui Ren, Li Luo, Bin Na\",\"doi\":\"10.1515/hf-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The combination of computer technology and non-destructive testing technology can facilitate the development of forestry in a more intelligent direction. In this paper, a Shapley additive explanations (SHAP)-based method is used to analyse the importance of band features in the near-infrared spectrum of black walnut wood, which ranges from 900 to 1650 nm. The spectral data from the SHAP analysis are fed into an integrated framework of machine learning algorithms based on four different theories. In the comparison tests, three different pre-processed NIR spectral data are entered into the integrated framework. The result of the SHAP analysis shows that the wavelengths that are positively correlated with the air-dry density of black walnut are 1354.59, 1400.23, 1341.51, 1426.26, 1413.25 nm. The model predictions show that the SHAP-treated spectral data outperformed the other two treatments for each model. For the SHAP-treated spectral data, the KNN model gives the best results with an R2 of 0.947 and an MSE of 0.0010.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0036\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0036","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Predicting the air-dry density of black walnut based on NIR analysis
Abstract The combination of computer technology and non-destructive testing technology can facilitate the development of forestry in a more intelligent direction. In this paper, a Shapley additive explanations (SHAP)-based method is used to analyse the importance of band features in the near-infrared spectrum of black walnut wood, which ranges from 900 to 1650 nm. The spectral data from the SHAP analysis are fed into an integrated framework of machine learning algorithms based on four different theories. In the comparison tests, three different pre-processed NIR spectral data are entered into the integrated framework. The result of the SHAP analysis shows that the wavelengths that are positively correlated with the air-dry density of black walnut are 1354.59, 1400.23, 1341.51, 1426.26, 1413.25 nm. The model predictions show that the SHAP-treated spectral data outperformed the other two treatments for each model. For the SHAP-treated spectral data, the KNN model gives the best results with an R2 of 0.947 and an MSE of 0.0010.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.