基于支持向量机和人工神经网络的桉树林分体积估计

Pub Date : 2022-03-03 DOI:10.21829/myb.2022.2812252
M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti
{"title":"基于支持向量机和人工神经网络的桉树林分体积估计","authors":"M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti","doi":"10.21829/myb.2022.2812252","DOIUrl":null,"url":null,"abstract":"Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimativas volumétricas em povoamentos de eucalipto utilizando máquinas de vetores de suporte e redes neurais artificiais\",\"authors\":\"M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti\",\"doi\":\"10.21829/myb.2022.2812252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21829/myb.2022.2812252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21829/myb.2022.2812252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在评估人工神经网络(RNA)和支持向量机(MVS)在桉树林分体积建模中的性能。使用了位于阿马帕州南部中部地区四个市镇的商业种植园的数据,这些数据由一家私营公司提供。对文献中建立的体积模型进行了调整,并与MVS和RNA技术进行了比较。数据分为80%用于训练和20%用于模型验证,MVS和RNA使用了回归模型使用的相同树状测量变量(dap和身高)。为了训练和推广MVS,使用了四种配置,由两个误差函数和两个核函数组成。对于RNA的配置、训练和泛化,使用了NeuroForest-Volutical软件,其中使用了Adaline(自适应线性单元)网络配置;多层感知器(MLP)和径向基函数(RBF)。使用观察到的和估计的个体体积之间的相关系数(ryŷ)、平均误差的平方根(表示为平均值的百分比(RMSE%))、残留物的图形分析(Res%)来评估回归模型的调整质量以及使用RNA和MVS的方法的调整质量。考虑到这些结果,与传统方法相比,MVS和RNA在个体体积估计方面获得了略好的性能,证明这些技术非常适合测量和森林管理领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Estimativas volumétricas em povoamentos de eucalipto utilizando máquinas de vetores de suporte e redes neurais artificiais
Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1