M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti
{"title":"基于支持向量机和人工神经网络的桉树林分体积估计","authors":"M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti","doi":"10.21829/myb.2022.2812252","DOIUrl":null,"url":null,"abstract":"Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimativas volumétricas em povoamentos de eucalipto utilizando máquinas de vetores de suporte e redes neurais artificiais\",\"authors\":\"M. Cordeiro, Julio Eduardo Arce, Fabiane Aparecida Retslaff Guimarães, Izabel Passos Bonete, Anthoinny Vittória dos Santos Silva, Jadson Coelho De Abreu, D. Binoti\",\"doi\":\"10.21829/myb.2022.2812252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21829/myb.2022.2812252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21829/myb.2022.2812252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimativas volumétricas em povoamentos de eucalipto utilizando máquinas de vetores de suporte e redes neurais artificiais
Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal.