Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna
{"title":"基于rns的可重构FIR滤波器在语音信号降噪中的设计与性能分析","authors":"Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna","doi":"10.37394/23203.2023.18.16","DOIUrl":null,"url":null,"abstract":"In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance Analysis of RNS-Based Reconfigurable FIR Filter for Noise Removal in Speech Signals Applications\",\"authors\":\"Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna\",\"doi\":\"10.37394/23203.2023.18.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2023.18.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2023.18.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Design and Performance Analysis of RNS-Based Reconfigurable FIR Filter for Noise Removal in Speech Signals Applications
In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.
期刊介绍:
WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.