EmoBot:通过情感聊天机器人在通用对话中产生人工情感

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-09 DOI:10.1016/j.cogsys.2023.101168
Md Ehtesham-Ul-Haque , Jacob D’Rozario , Rudaiba Adnin , Farhan Tanvir Utshaw , Fabiha Tasneem , Israt Jahan Shefa , A.B.M. Alim Al Islam
{"title":"EmoBot:通过情感聊天机器人在通用对话中产生人工情感","authors":"Md Ehtesham-Ul-Haque ,&nbsp;Jacob D’Rozario ,&nbsp;Rudaiba Adnin ,&nbsp;Farhan Tanvir Utshaw ,&nbsp;Fabiha Tasneem ,&nbsp;Israt Jahan Shefa ,&nbsp;A.B.M. Alim Al Islam","doi":"10.1016/j.cogsys.2023.101168","DOIUrl":null,"url":null,"abstract":"<div><p><span>Emotion modeling has always been intriguing to researchers, where detecting emotion is highly focused and generating emotion is much less focused to date. Therefore, in this paper, we aim to exploring emotion generation, particularly for general-purpose conversations. Based on the Cognitive Appraisal Theory and focusing on audio and textual inputs, we propose a novel method to calculate informative variables to evaluate a particular emotion-generating event and six primary emotions. Incorporating such a method of artificial emotion generation, we implement an emotional chatbot, namely </span><em>EmoBot</em>. Accordingly, <em>EmoBot</em> analyzes continuous audio and textual inputs, calculates the informative variables to evaluate the current situation, generates appropriate emotions, and responds accordingly. An objective evaluation indicates that <em>EmoBot</em> could generate more accurate emotional and semantic responses than a traditional chatbot that does not consider emotion. Additionally, a subjective evaluation of <em>EmoBot</em> demonstrates the appreciation of users for <em>EmoBot</em> over a traditional chatbot that does not consider emotion.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EmoBot: Artificial emotion generation through an emotional chatbot during general-purpose conversations\",\"authors\":\"Md Ehtesham-Ul-Haque ,&nbsp;Jacob D’Rozario ,&nbsp;Rudaiba Adnin ,&nbsp;Farhan Tanvir Utshaw ,&nbsp;Fabiha Tasneem ,&nbsp;Israt Jahan Shefa ,&nbsp;A.B.M. Alim Al Islam\",\"doi\":\"10.1016/j.cogsys.2023.101168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Emotion modeling has always been intriguing to researchers, where detecting emotion is highly focused and generating emotion is much less focused to date. Therefore, in this paper, we aim to exploring emotion generation, particularly for general-purpose conversations. Based on the Cognitive Appraisal Theory and focusing on audio and textual inputs, we propose a novel method to calculate informative variables to evaluate a particular emotion-generating event and six primary emotions. Incorporating such a method of artificial emotion generation, we implement an emotional chatbot, namely </span><em>EmoBot</em>. Accordingly, <em>EmoBot</em> analyzes continuous audio and textual inputs, calculates the informative variables to evaluate the current situation, generates appropriate emotions, and responds accordingly. An objective evaluation indicates that <em>EmoBot</em> could generate more accurate emotional and semantic responses than a traditional chatbot that does not consider emotion. Additionally, a subjective evaluation of <em>EmoBot</em> demonstrates the appreciation of users for <em>EmoBot</em> over a traditional chatbot that does not consider emotion.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138904172300102X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172300102X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

情感建模一直吸引着研究人员,迄今为止,情感检测是高度集中的,而情感产生则不那么集中。因此,在本文中,我们的目标是探索情感的产生,特别是对于通用会话。基于认知评价理论,以音频和文本输入为重点,提出了一种计算信息变量的新方法,以评估特定的情绪产生事件和六种主要情绪。结合这种人工情感生成的方法,我们实现了一个情感聊天机器人,即EmoBot。因此,EmoBot分析连续的音频和文本输入,计算信息变量来评估当前情况,产生适当的情绪,并做出相应的反应。客观评价表明,EmoBot比不考虑情感的传统聊天机器人能够产生更准确的情感和语义反应。此外,对EmoBot的主观评价表明,用户对EmoBot的欣赏程度超过了不考虑情感的传统聊天机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EmoBot: Artificial emotion generation through an emotional chatbot during general-purpose conversations

Emotion modeling has always been intriguing to researchers, where detecting emotion is highly focused and generating emotion is much less focused to date. Therefore, in this paper, we aim to exploring emotion generation, particularly for general-purpose conversations. Based on the Cognitive Appraisal Theory and focusing on audio and textual inputs, we propose a novel method to calculate informative variables to evaluate a particular emotion-generating event and six primary emotions. Incorporating such a method of artificial emotion generation, we implement an emotional chatbot, namely EmoBot. Accordingly, EmoBot analyzes continuous audio and textual inputs, calculates the informative variables to evaluate the current situation, generates appropriate emotions, and responds accordingly. An objective evaluation indicates that EmoBot could generate more accurate emotional and semantic responses than a traditional chatbot that does not consider emotion. Additionally, a subjective evaluation of EmoBot demonstrates the appreciation of users for EmoBot over a traditional chatbot that does not consider emotion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1