推理因果结构的贝叶斯最优实验设计

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2021-03-28 DOI:10.1214/22-ba1335
M. Zemplenyi, Jeffrey W. Miller
{"title":"推理因果结构的贝叶斯最优实验设计","authors":"M. Zemplenyi, Jeffrey W. Miller","doi":"10.1214/22-ba1335","DOIUrl":null,"url":null,"abstract":"Inferring the causal structure of a system typically requires interventional data, rather than just observational data. Since interventional experiments can be costly, it is preferable to select interventions that yield the maximum amount of information about a system. We propose a novel Bayesian method for optimal experimental design by sequentially selecting interventions that minimize the expected posterior entropy as rapidly as possible. A key feature is that the method can be implemented by computing simple summaries of the current posterior, avoiding the computationally burdensome task of repeatedly performing posterior inference on hypothetical future datasets drawn from the posterior predictive. After deriving the method in a general setting, we apply it to the problem of inferring causal networks. We present a series of simulation studies in which we find that the proposed method performs favorably compared to existing alternative methods. Finally, we apply the method to real and simulated data from a protein-signaling network.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian Optimal Experimental Design for Inferring Causal Structure\",\"authors\":\"M. Zemplenyi, Jeffrey W. Miller\",\"doi\":\"10.1214/22-ba1335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring the causal structure of a system typically requires interventional data, rather than just observational data. Since interventional experiments can be costly, it is preferable to select interventions that yield the maximum amount of information about a system. We propose a novel Bayesian method for optimal experimental design by sequentially selecting interventions that minimize the expected posterior entropy as rapidly as possible. A key feature is that the method can be implemented by computing simple summaries of the current posterior, avoiding the computationally burdensome task of repeatedly performing posterior inference on hypothetical future datasets drawn from the posterior predictive. After deriving the method in a general setting, we apply it to the problem of inferring causal networks. We present a series of simulation studies in which we find that the proposed method performs favorably compared to existing alternative methods. Finally, we apply the method to real and simulated data from a protein-signaling network.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1335\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1335","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

推断系统的因果结构通常需要介入数据,而不仅仅是观察数据。由于介入实验可能成本高昂,因此优选选择能产生关于系统的最大信息量的介入。我们提出了一种新的贝叶斯优化实验设计方法,通过顺序选择尽可能快地最小化预期后验熵的干预措施。一个关键特征是,该方法可以通过计算当前后验的简单摘要来实现,避免了在从后验预测中提取的假设未来数据集上重复执行后验推理的计算繁重任务。在一般情况下推导出该方法后,我们将其应用于推理因果网络的问题。我们进行了一系列模拟研究,发现与现有的替代方法相比,所提出的方法表现良好。最后,我们将该方法应用于蛋白质信号网络的真实和模拟数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Optimal Experimental Design for Inferring Causal Structure
Inferring the causal structure of a system typically requires interventional data, rather than just observational data. Since interventional experiments can be costly, it is preferable to select interventions that yield the maximum amount of information about a system. We propose a novel Bayesian method for optimal experimental design by sequentially selecting interventions that minimize the expected posterior entropy as rapidly as possible. A key feature is that the method can be implemented by computing simple summaries of the current posterior, avoiding the computationally burdensome task of repeatedly performing posterior inference on hypothetical future datasets drawn from the posterior predictive. After deriving the method in a general setting, we apply it to the problem of inferring causal networks. We present a series of simulation studies in which we find that the proposed method performs favorably compared to existing alternative methods. Finally, we apply the method to real and simulated data from a protein-signaling network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1