{"title":"环境空气超声非接触式植物健康监测","authors":"Teng Yang, Yuqi Jin, N. Dahotre, A. Neogi","doi":"10.3390/biophysica2040029","DOIUrl":null,"url":null,"abstract":"In this work, we report a non-destructive and non-contacting ultrasound system with a novel air-coupled transducer to continuously monitor the drying process of prickly pear (nopal) pads in a lab environment. Compared with conventional imaging and spectroscopic methods or electrical-based approaches, ultrasound-based methods are non-invasive, cost-effective, and suitable for large volume evaluation. The time-dependent elastic modulus of the cactus can be obtained and monitored by using our proposed ultrasonic method. The evaluated elastic modulus behavior shows a good agreement with the destructive testing results in the existing literature. With further development, the proposed method can be used for in vivo plant health monitoring.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Contacting Plant Health Monitoring via Ultrasound in Ambient Air\",\"authors\":\"Teng Yang, Yuqi Jin, N. Dahotre, A. Neogi\",\"doi\":\"10.3390/biophysica2040029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report a non-destructive and non-contacting ultrasound system with a novel air-coupled transducer to continuously monitor the drying process of prickly pear (nopal) pads in a lab environment. Compared with conventional imaging and spectroscopic methods or electrical-based approaches, ultrasound-based methods are non-invasive, cost-effective, and suitable for large volume evaluation. The time-dependent elastic modulus of the cactus can be obtained and monitored by using our proposed ultrasonic method. The evaluated elastic modulus behavior shows a good agreement with the destructive testing results in the existing literature. With further development, the proposed method can be used for in vivo plant health monitoring.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica2040029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2040029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Contacting Plant Health Monitoring via Ultrasound in Ambient Air
In this work, we report a non-destructive and non-contacting ultrasound system with a novel air-coupled transducer to continuously monitor the drying process of prickly pear (nopal) pads in a lab environment. Compared with conventional imaging and spectroscopic methods or electrical-based approaches, ultrasound-based methods are non-invasive, cost-effective, and suitable for large volume evaluation. The time-dependent elastic modulus of the cactus can be obtained and monitored by using our proposed ultrasonic method. The evaluated elastic modulus behavior shows a good agreement with the destructive testing results in the existing literature. With further development, the proposed method can be used for in vivo plant health monitoring.